公共政策对COVID-19传播的影响分析——以印第安纳州数据为例研究模型和数据集选择的作用

IF 1.5 Q2 SOCIAL SCIENCES, MATHEMATICAL METHODS
G. Mohler, M. Short, F. Schoenberg, Daniel Sledge
{"title":"公共政策对COVID-19传播的影响分析——以印第安纳州数据为例研究模型和数据集选择的作用","authors":"G. Mohler, M. Short, F. Schoenberg, Daniel Sledge","doi":"10.1080/2330443X.2020.1859030","DOIUrl":null,"url":null,"abstract":"ABSTRACT Dynamic estimation of the reproduction number of COVID-19 is important for assessing the impact of public health measures on virus transmission. State and local decisions about whether to relax or strengthen mitigation measures are being made in part based on whether the reproduction number, Rt , falls below the self-sustaining value of 1. Employing branching point process models and COVID-19 data from Indiana as a case study, we show that estimates of the current value of Rt , and whether it is above or below 1, depend critically on choices about data selection and model specification and estimation. In particular, we find a range of Rt values from 0.47 to 1.20 as we vary the type of estimator and input dataset. We present methods for model comparison and evaluation and then discuss the policy implications of our findings.","PeriodicalId":43397,"journal":{"name":"Statistics and Public Policy","volume":"8 1","pages":"1 - 8"},"PeriodicalIF":1.5000,"publicationDate":"2020-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/2330443X.2020.1859030","citationCount":"4","resultStr":"{\"title\":\"Analyzing the Impacts of Public Policy on COVID-19 Transmission: A Case Study of the Role of Model and Dataset Selection Using Data from Indiana\",\"authors\":\"G. Mohler, M. Short, F. Schoenberg, Daniel Sledge\",\"doi\":\"10.1080/2330443X.2020.1859030\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Dynamic estimation of the reproduction number of COVID-19 is important for assessing the impact of public health measures on virus transmission. State and local decisions about whether to relax or strengthen mitigation measures are being made in part based on whether the reproduction number, Rt , falls below the self-sustaining value of 1. Employing branching point process models and COVID-19 data from Indiana as a case study, we show that estimates of the current value of Rt , and whether it is above or below 1, depend critically on choices about data selection and model specification and estimation. In particular, we find a range of Rt values from 0.47 to 1.20 as we vary the type of estimator and input dataset. We present methods for model comparison and evaluation and then discuss the policy implications of our findings.\",\"PeriodicalId\":43397,\"journal\":{\"name\":\"Statistics and Public Policy\",\"volume\":\"8 1\",\"pages\":\"1 - 8\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2020-12-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/2330443X.2020.1859030\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistics and Public Policy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/2330443X.2020.1859030\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"SOCIAL SCIENCES, MATHEMATICAL METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics and Public Policy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/2330443X.2020.1859030","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"SOCIAL SCIENCES, MATHEMATICAL METHODS","Score":null,"Total":0}
引用次数: 4

摘要

动态估计COVID-19的繁殖数对于评估公共卫生措施对病毒传播的影响具有重要意义。州和地方关于是放松还是加强缓解措施的决定,在一定程度上取决于繁殖数Rt是否低于自我维持值1。以分支点过程模型和来自印第安纳州的COVID-19数据为例,我们发现对Rt当前值的估计,以及它是高于还是低于1,主要取决于对数据选择和模型规范和估计的选择。特别是,当我们改变估计器和输入数据集的类型时,我们发现Rt值的范围从0.47到1.20。我们提出了模型比较和评估的方法,然后讨论了我们的研究结果的政策含义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analyzing the Impacts of Public Policy on COVID-19 Transmission: A Case Study of the Role of Model and Dataset Selection Using Data from Indiana
ABSTRACT Dynamic estimation of the reproduction number of COVID-19 is important for assessing the impact of public health measures on virus transmission. State and local decisions about whether to relax or strengthen mitigation measures are being made in part based on whether the reproduction number, Rt , falls below the self-sustaining value of 1. Employing branching point process models and COVID-19 data from Indiana as a case study, we show that estimates of the current value of Rt , and whether it is above or below 1, depend critically on choices about data selection and model specification and estimation. In particular, we find a range of Rt values from 0.47 to 1.20 as we vary the type of estimator and input dataset. We present methods for model comparison and evaluation and then discuss the policy implications of our findings.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Statistics and Public Policy
Statistics and Public Policy SOCIAL SCIENCES, MATHEMATICAL METHODS-
CiteScore
3.20
自引率
6.20%
发文量
13
审稿时长
32 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信