{"title":"全球稳定蛋白转录动力学的振荡模型","authors":"H. Díaz-Marín, O. Osuna, G. Villavicencio-Pulido","doi":"10.1142/s0218339023500298","DOIUrl":null,"url":null,"abstract":"Oscillations appear in all levels of biological organization. Oscillatory phenomena do not always possess a simple periodic nature. In this work, we analyze a gene transcriptional network in which we assume an almost periodic input that regulates gene. We use an almost periodic input [Formula: see text] since a periodic one is very restrictive. We show that the almost periodic model proposed has a unique almost periodic attractor. Numerical simulations show that the retroactivity is highly affected when an almost periodic input is used in an upstream system that is interconnected to a downstream system. By comparison of the solutions of the model, we can conclude that when the amount of protein bound to the promoter is modeled by either a periodic function or an almost periodic one, which is denoted by [Formula: see text], the amount of protein concentration [Formula: see text] can be underestimated or overestimated depending on if [Formula: see text] is modeling by a periodic or an almost periodic function. These estimation errors can lead to an error in the quantification of retroactivity which in turn can alter the coordination between an upstream system and a downstream one.","PeriodicalId":54872,"journal":{"name":"Journal of Biological Systems","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2023-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"AN OSCILLATORY MODEL FOR GLOBALLY STABLE PROTEIN TRANSCRIPTION DYNAMICS\",\"authors\":\"H. Díaz-Marín, O. Osuna, G. Villavicencio-Pulido\",\"doi\":\"10.1142/s0218339023500298\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Oscillations appear in all levels of biological organization. Oscillatory phenomena do not always possess a simple periodic nature. In this work, we analyze a gene transcriptional network in which we assume an almost periodic input that regulates gene. We use an almost periodic input [Formula: see text] since a periodic one is very restrictive. We show that the almost periodic model proposed has a unique almost periodic attractor. Numerical simulations show that the retroactivity is highly affected when an almost periodic input is used in an upstream system that is interconnected to a downstream system. By comparison of the solutions of the model, we can conclude that when the amount of protein bound to the promoter is modeled by either a periodic function or an almost periodic one, which is denoted by [Formula: see text], the amount of protein concentration [Formula: see text] can be underestimated or overestimated depending on if [Formula: see text] is modeling by a periodic or an almost periodic function. These estimation errors can lead to an error in the quantification of retroactivity which in turn can alter the coordination between an upstream system and a downstream one.\",\"PeriodicalId\":54872,\"journal\":{\"name\":\"Journal of Biological Systems\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biological Systems\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1142/s0218339023500298\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biological Systems","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1142/s0218339023500298","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOLOGY","Score":null,"Total":0}
AN OSCILLATORY MODEL FOR GLOBALLY STABLE PROTEIN TRANSCRIPTION DYNAMICS
Oscillations appear in all levels of biological organization. Oscillatory phenomena do not always possess a simple periodic nature. In this work, we analyze a gene transcriptional network in which we assume an almost periodic input that regulates gene. We use an almost periodic input [Formula: see text] since a periodic one is very restrictive. We show that the almost periodic model proposed has a unique almost periodic attractor. Numerical simulations show that the retroactivity is highly affected when an almost periodic input is used in an upstream system that is interconnected to a downstream system. By comparison of the solutions of the model, we can conclude that when the amount of protein bound to the promoter is modeled by either a periodic function or an almost periodic one, which is denoted by [Formula: see text], the amount of protein concentration [Formula: see text] can be underestimated or overestimated depending on if [Formula: see text] is modeling by a periodic or an almost periodic function. These estimation errors can lead to an error in the quantification of retroactivity which in turn can alter the coordination between an upstream system and a downstream one.
期刊介绍:
The Journal of Biological Systems is published quarterly. The goal of the Journal is to promote interdisciplinary approaches in Biology and in Medicine, and the study of biological situations with a variety of tools, including mathematical and general systems methods. The Journal solicits original research papers and survey articles in areas that include (but are not limited to):
Complex systems studies; isomorphies; nonlinear dynamics; entropy; mathematical tools and systems theories with applications in Biology and Medicine.
Interdisciplinary approaches in Biology and Medicine; transfer of methods from one discipline to another; integration of biological levels, from atomic to molecular, macromolecular, cellular, and organic levels; animal biology; plant biology.
Environmental studies; relationships between individuals, populations, communities and ecosystems; bioeconomics, management of renewable resources; hierarchy theory; integration of spatial and time scales.
Evolutionary biology; co-evolutions; genetics and evolution; branching processes and phyllotaxis.
Medical systems; physiology; cardiac modeling; computer models in Medicine; cancer research; epidemiology.
Numerical simulations and computations; numerical study and analysis of biological data.
Epistemology; history of science.
The journal will also publish book reviews.