Xin Wang, Justin Cortez, A. Dupuy, J. Schoenung, W. Bowman
{"title":"高熵氧化物(Co,Cu,Mg,Ni,Zn)O表现出与晶粒尺寸相关的室温变形","authors":"Xin Wang, Justin Cortez, A. Dupuy, J. Schoenung, W. Bowman","doi":"10.1080/21663831.2022.2135409","DOIUrl":null,"url":null,"abstract":"Despite their vast composition space and promising properties, little is known about the fundamental mechanical behavior of high entropy oxides (HEOs). Here we provide experimental evidence of the nanoscale origin of room temperature deformation in (Co,Cu,Mg,Ni,Zn)O HEOs with different grain sizes. We find that micron-grain (Co,Cu,Mg,Ni,Zn)O deforms predominately through extensive <110>{1–10} dislocation slip manifesting as discrete slip bands. Nano-grain (Co,Cu,Mg,Ni,Zn)O, in addition to moderate dislocation slip activity, deforms through grain boundary sliding and intergranular cracking. The significant dislocation-mediated deformation and grain size dependent behavior demonstrates that HEOs have the potential for diverse and highly tailorable mechanical behavior. GRAPHICAL ABSTRACT IMPACT STATEMENT High entropy oxides (Co,Cu,Mg,Ni,Zn)O exhibit grain size dependent room temperature deformation, with micron-grain samples displaying significant potential for dislocation-mediated deformation and nanocrystalline samples exhibiting grain boundary sliding and micro-cracking.","PeriodicalId":18291,"journal":{"name":"Materials Research Letters","volume":"11 1","pages":"196 - 204"},"PeriodicalIF":8.6000,"publicationDate":"2022-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"High entropy oxide (Co,Cu,Mg,Ni,Zn)O exhibits grain size dependent room temperature deformation\",\"authors\":\"Xin Wang, Justin Cortez, A. Dupuy, J. Schoenung, W. Bowman\",\"doi\":\"10.1080/21663831.2022.2135409\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Despite their vast composition space and promising properties, little is known about the fundamental mechanical behavior of high entropy oxides (HEOs). Here we provide experimental evidence of the nanoscale origin of room temperature deformation in (Co,Cu,Mg,Ni,Zn)O HEOs with different grain sizes. We find that micron-grain (Co,Cu,Mg,Ni,Zn)O deforms predominately through extensive <110>{1–10} dislocation slip manifesting as discrete slip bands. Nano-grain (Co,Cu,Mg,Ni,Zn)O, in addition to moderate dislocation slip activity, deforms through grain boundary sliding and intergranular cracking. The significant dislocation-mediated deformation and grain size dependent behavior demonstrates that HEOs have the potential for diverse and highly tailorable mechanical behavior. GRAPHICAL ABSTRACT IMPACT STATEMENT High entropy oxides (Co,Cu,Mg,Ni,Zn)O exhibit grain size dependent room temperature deformation, with micron-grain samples displaying significant potential for dislocation-mediated deformation and nanocrystalline samples exhibiting grain boundary sliding and micro-cracking.\",\"PeriodicalId\":18291,\"journal\":{\"name\":\"Materials Research Letters\",\"volume\":\"11 1\",\"pages\":\"196 - 204\"},\"PeriodicalIF\":8.6000,\"publicationDate\":\"2022-10-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Research Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1080/21663831.2022.2135409\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Research Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/21663831.2022.2135409","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
High entropy oxide (Co,Cu,Mg,Ni,Zn)O exhibits grain size dependent room temperature deformation
Despite their vast composition space and promising properties, little is known about the fundamental mechanical behavior of high entropy oxides (HEOs). Here we provide experimental evidence of the nanoscale origin of room temperature deformation in (Co,Cu,Mg,Ni,Zn)O HEOs with different grain sizes. We find that micron-grain (Co,Cu,Mg,Ni,Zn)O deforms predominately through extensive <110>{1–10} dislocation slip manifesting as discrete slip bands. Nano-grain (Co,Cu,Mg,Ni,Zn)O, in addition to moderate dislocation slip activity, deforms through grain boundary sliding and intergranular cracking. The significant dislocation-mediated deformation and grain size dependent behavior demonstrates that HEOs have the potential for diverse and highly tailorable mechanical behavior. GRAPHICAL ABSTRACT IMPACT STATEMENT High entropy oxides (Co,Cu,Mg,Ni,Zn)O exhibit grain size dependent room temperature deformation, with micron-grain samples displaying significant potential for dislocation-mediated deformation and nanocrystalline samples exhibiting grain boundary sliding and micro-cracking.
期刊介绍:
Materials Research Letters is a high impact, open access journal that focuses on the engineering and technology of materials, materials physics and chemistry, and novel and emergent materials. It supports the materials research community by publishing original and compelling research work. The journal provides fast communications on cutting-edge materials research findings, with a primary focus on advanced metallic materials and physical metallurgy. It also considers other materials such as intermetallics, ceramics, and nanocomposites. Materials Research Letters publishes papers with significant breakthroughs in materials science, including research on unprecedented mechanical and functional properties, mechanisms for processing and formation of novel microstructures (including nanostructures, heterostructures, and hierarchical structures), and the mechanisms, physics, and chemistry responsible for the observed mechanical and functional behaviors of advanced materials. The journal accepts original research articles, original letters, perspective pieces presenting provocative and visionary opinions and views, and brief overviews of critical issues.