QCA电路的能量估计:多路复用器的研究

IF 1 4区 工程技术 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC
Angshuman Khan, M. C. Parameshwara, A. Bahar
{"title":"QCA电路的能量估计:多路复用器的研究","authors":"Angshuman Khan, M. C. Parameshwara, A. Bahar","doi":"10.2478/jee-2022-0036","DOIUrl":null,"url":null,"abstract":"Abstract Quantum-dot Cellular Automata (QCA) is a rival to complementary-metal-oxide-semiconductor (CMOS)-based technology and one of the most cutting-edge nano-scale technologies. The multiplexer is a fundamental component in the fields of nano communication and nano computation. The investigative item of this article is the QCA multiplexer, and a handful of the best multiplexers were chosen as samples for the current experiment. The QCA layouts were designed in the QCADesigner-2.0.3 simulation engine environment, and the best one was reported after successfully experimenting on a total of eight samples. The co-ordinate-based energy was estimated using QCADesigner-E (QDE), and the non-adiabatic energy waste was investigated using QCAPro. According to the coordinates-based technique, the overall energy waste of the best energy-saving QCA multiplexer is 5.90 meV, with an average energy loss per cycle of 0.537 meV. Another approach, QCAPro-based, was used to estimate the energy loss at three different levels of tunneling at a constant temperature, yielding an overall energy loss of approximately 12 to 15 meV for the energy-efficient multiplexers..","PeriodicalId":15661,"journal":{"name":"Journal of Electrical Engineering-elektrotechnicky Casopis","volume":"73 1","pages":"276 - 283"},"PeriodicalIF":1.0000,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Energy estimation of QCA circuits: An investigation with multiplexers\",\"authors\":\"Angshuman Khan, M. C. Parameshwara, A. Bahar\",\"doi\":\"10.2478/jee-2022-0036\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Quantum-dot Cellular Automata (QCA) is a rival to complementary-metal-oxide-semiconductor (CMOS)-based technology and one of the most cutting-edge nano-scale technologies. The multiplexer is a fundamental component in the fields of nano communication and nano computation. The investigative item of this article is the QCA multiplexer, and a handful of the best multiplexers were chosen as samples for the current experiment. The QCA layouts were designed in the QCADesigner-2.0.3 simulation engine environment, and the best one was reported after successfully experimenting on a total of eight samples. The co-ordinate-based energy was estimated using QCADesigner-E (QDE), and the non-adiabatic energy waste was investigated using QCAPro. According to the coordinates-based technique, the overall energy waste of the best energy-saving QCA multiplexer is 5.90 meV, with an average energy loss per cycle of 0.537 meV. Another approach, QCAPro-based, was used to estimate the energy loss at three different levels of tunneling at a constant temperature, yielding an overall energy loss of approximately 12 to 15 meV for the energy-efficient multiplexers..\",\"PeriodicalId\":15661,\"journal\":{\"name\":\"Journal of Electrical Engineering-elektrotechnicky Casopis\",\"volume\":\"73 1\",\"pages\":\"276 - 283\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2022-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Electrical Engineering-elektrotechnicky Casopis\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.2478/jee-2022-0036\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electrical Engineering-elektrotechnicky Casopis","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2478/jee-2022-0036","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 3

摘要

量子点元胞自动机(Quantum-dot Cellular Automata, QCA)是互补金属氧化物半导体(CMOS)技术的竞争对手,也是最尖端的纳米级技术之一。多路复用器是纳米通信和纳米计算领域的重要组成部分。本文的研究项目是QCA多路复用器,并选择了少数最好的多路复用器作为本实验的样本。在qcaddesigner -2.0.3仿真引擎环境下设计了QCA布局,并在8个样本上成功实验,获得了最佳布局。利用qcaddesigner - e (QDE)对基于坐标的能量进行估算,并利用QCAPro对非绝热能量浪费进行研究。根据基于坐标的技术,最佳节能QCA复用器的总能量浪费为5.90 meV,每周期平均能量损失为0.537 meV。另一种基于qcapro的方法用于估算恒温下三种不同层次隧道的能量损失,对节能多路复用器产生约12至15 meV的总能量损失。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Energy estimation of QCA circuits: An investigation with multiplexers
Abstract Quantum-dot Cellular Automata (QCA) is a rival to complementary-metal-oxide-semiconductor (CMOS)-based technology and one of the most cutting-edge nano-scale technologies. The multiplexer is a fundamental component in the fields of nano communication and nano computation. The investigative item of this article is the QCA multiplexer, and a handful of the best multiplexers were chosen as samples for the current experiment. The QCA layouts were designed in the QCADesigner-2.0.3 simulation engine environment, and the best one was reported after successfully experimenting on a total of eight samples. The co-ordinate-based energy was estimated using QCADesigner-E (QDE), and the non-adiabatic energy waste was investigated using QCAPro. According to the coordinates-based technique, the overall energy waste of the best energy-saving QCA multiplexer is 5.90 meV, with an average energy loss per cycle of 0.537 meV. Another approach, QCAPro-based, was used to estimate the energy loss at three different levels of tunneling at a constant temperature, yielding an overall energy loss of approximately 12 to 15 meV for the energy-efficient multiplexers..
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Electrical Engineering-elektrotechnicky Casopis
Journal of Electrical Engineering-elektrotechnicky Casopis 工程技术-工程:电子与电气
CiteScore
1.70
自引率
12.50%
发文量
40
审稿时长
6-12 weeks
期刊介绍: The joint publication of the Slovak University of Technology, Faculty of Electrical Engineering and Information Technology, and of the Slovak Academy of Sciences, Institute of Electrical Engineering, is a wide-scope journal published bimonthly and comprising. -Automation and Control- Computer Engineering- Electronics and Microelectronics- Electro-physics and Electromagnetism- Material Science- Measurement and Metrology- Power Engineering and Energy Conversion- Signal Processing and Telecommunications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信