确定对称平面曲线的所有$(2,3)$环面结构

IF 0.8 4区 数学 Q2 MATHEMATICS
R. Kloosterman
{"title":"确定对称平面曲线的所有$(2,3)$环面结构","authors":"R. Kloosterman","doi":"10.4310/ARKIV.2018.V56.N2.A9","DOIUrl":null,"url":null,"abstract":"In this paper, we describe all (2, 3)-torus structures of a highly symmetric 39-cuspidal degree 12 curve. A direct computer-aided determination of these torus structures seems to be out of reach. We use various quotients by automorphisms to find torus structures. We use a height pairing argument to show that there are no further structures.","PeriodicalId":55569,"journal":{"name":"Arkiv for Matematik","volume":"56 1","pages":"341-349"},"PeriodicalIF":0.8000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Determining all $(2, 3)$-torus structures of a symmetric plane curve\",\"authors\":\"R. Kloosterman\",\"doi\":\"10.4310/ARKIV.2018.V56.N2.A9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we describe all (2, 3)-torus structures of a highly symmetric 39-cuspidal degree 12 curve. A direct computer-aided determination of these torus structures seems to be out of reach. We use various quotients by automorphisms to find torus structures. We use a height pairing argument to show that there are no further structures.\",\"PeriodicalId\":55569,\"journal\":{\"name\":\"Arkiv for Matematik\",\"volume\":\"56 1\",\"pages\":\"341-349\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2018-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Arkiv for Matematik\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/ARKIV.2018.V56.N2.A9\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Arkiv for Matematik","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/ARKIV.2018.V56.N2.A9","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

在本文中,我们描述了高度对称的39尖度12曲线的所有(2,3)-环面结构。用计算机直接确定这些环面结构似乎是遥不可及的。我们使用自同构的各种商来寻找环面结构。我们使用高度配对参数来表明没有进一步的结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Determining all $(2, 3)$-torus structures of a symmetric plane curve
In this paper, we describe all (2, 3)-torus structures of a highly symmetric 39-cuspidal degree 12 curve. A direct computer-aided determination of these torus structures seems to be out of reach. We use various quotients by automorphisms to find torus structures. We use a height pairing argument to show that there are no further structures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Arkiv for Matematik
Arkiv for Matematik 数学-数学
CiteScore
1.10
自引率
0.00%
发文量
7
审稿时长
>12 weeks
期刊介绍: Publishing research papers, of short to moderate length, in all fields of mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信