3流形的光滑有限阶bilipschitz同胚

Pub Date : 2023-09-02 DOI:10.1112/topo.12309
Lucien Grillet
{"title":"3流形的光滑有限阶bilipschitz同胚","authors":"Lucien Grillet","doi":"10.1112/topo.12309","DOIUrl":null,"url":null,"abstract":"<p>We show that, for <math>\n <semantics>\n <mrow>\n <mi>ε</mi>\n <mo>=</mo>\n <mfrac>\n <mn>1</mn>\n <mn>4000</mn>\n </mfrac>\n </mrow>\n <annotation>$\\varepsilon =\\frac{1}{4000}$</annotation>\n </semantics></math>, any action of a finite cyclic group by <math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <mn>1</mn>\n <mo>+</mo>\n <mi>ε</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$(1+\\varepsilon )$</annotation>\n </semantics></math>-bilipschitz homeomorphisms on a closed 3-manifold is conjugated to a smooth action.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Smoothing finite-order bilipschitz homeomorphisms of 3-manifolds\",\"authors\":\"Lucien Grillet\",\"doi\":\"10.1112/topo.12309\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We show that, for <math>\\n <semantics>\\n <mrow>\\n <mi>ε</mi>\\n <mo>=</mo>\\n <mfrac>\\n <mn>1</mn>\\n <mn>4000</mn>\\n </mfrac>\\n </mrow>\\n <annotation>$\\\\varepsilon =\\\\frac{1}{4000}$</annotation>\\n </semantics></math>, any action of a finite cyclic group by <math>\\n <semantics>\\n <mrow>\\n <mo>(</mo>\\n <mn>1</mn>\\n <mo>+</mo>\\n <mi>ε</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$(1+\\\\varepsilon )$</annotation>\\n </semantics></math>-bilipschitz homeomorphisms on a closed 3-manifold is conjugated to a smooth action.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1112/topo.12309\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/topo.12309","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们证明了对于ε=14000 $\varepsilon =\frac{1}{4000}$,由(1+ε) $(1+\varepsilon )$‐bilipschitz同胚构成的有限循环群在闭3‐流形上的任何作用都共轭为光滑作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Smoothing finite-order bilipschitz homeomorphisms of 3-manifolds

We show that, for ε = 1 4000 $\varepsilon =\frac{1}{4000}$ , any action of a finite cyclic group by ( 1 + ε ) $(1+\varepsilon )$ -bilipschitz homeomorphisms on a closed 3-manifold is conjugated to a smooth action.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信