{"title":"利用跨学科方法深入了解亲缘关系密切的桉树的物种形成和物种划界","authors":"S. Rutherford","doi":"10.1071/SB18042","DOIUrl":null,"url":null,"abstract":"Abstract. Speciation is a central process in evolutionary biology and is responsible for the diversity of life on Earth. Although there has been much progress in evolutionary research over the past 150 years, understanding the many facets of speciation remains a challenge. In this synthesis, I focus on the use of an interdisciplinary approach to examine speciation and species delimitation in a group of closely related eucalypts called the green ashes (Eucalyptus subgenus Eucalyptus section Eucalyptus). The green ashes comprise tall trees on fertile soils (e.g. the tallest angiosperm in the world, E. regnans), as well as medium trees and mallees on low-nutrient soils. Previous phylogenetic and population-genetics analyses based on genome-wide scans showed that species boundaries in the green ashes are not always consistent with classifications based on morphology and there was evidence of gene flow across lineages. Genomic analyses also suggested that the green ashes were at varying stages of speciation, with some species being highly genetically differentiated, whereas others were at earlier stages on the speciation continuum. A previous common garden study showed that inter-specific differences in seedling traits were significant, with traits such as leaf width being highly plastic across resource treatments for most species. Overall, this synthesis demonstrated that an interdisciplinary approach incorporating phylogenomics, population genomics and a common garden experiment can provide insights into speciation and species delimitation in the green ash eucalypts. Such an approach may be useful in understanding the evolutionary history of other closely related species in Eucalyptus, as well as other groups of organisms.","PeriodicalId":55416,"journal":{"name":"Australian Systematic Botany","volume":"33 1","pages":"110 - 127"},"PeriodicalIF":1.6000,"publicationDate":"2020-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1071/SB18042","citationCount":"6","resultStr":"{\"title\":\"Insights into speciation and species delimitation of closely related eucalypts using an interdisciplinary approach\",\"authors\":\"S. Rutherford\",\"doi\":\"10.1071/SB18042\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract. Speciation is a central process in evolutionary biology and is responsible for the diversity of life on Earth. Although there has been much progress in evolutionary research over the past 150 years, understanding the many facets of speciation remains a challenge. In this synthesis, I focus on the use of an interdisciplinary approach to examine speciation and species delimitation in a group of closely related eucalypts called the green ashes (Eucalyptus subgenus Eucalyptus section Eucalyptus). The green ashes comprise tall trees on fertile soils (e.g. the tallest angiosperm in the world, E. regnans), as well as medium trees and mallees on low-nutrient soils. Previous phylogenetic and population-genetics analyses based on genome-wide scans showed that species boundaries in the green ashes are not always consistent with classifications based on morphology and there was evidence of gene flow across lineages. Genomic analyses also suggested that the green ashes were at varying stages of speciation, with some species being highly genetically differentiated, whereas others were at earlier stages on the speciation continuum. A previous common garden study showed that inter-specific differences in seedling traits were significant, with traits such as leaf width being highly plastic across resource treatments for most species. Overall, this synthesis demonstrated that an interdisciplinary approach incorporating phylogenomics, population genomics and a common garden experiment can provide insights into speciation and species delimitation in the green ash eucalypts. Such an approach may be useful in understanding the evolutionary history of other closely related species in Eucalyptus, as well as other groups of organisms.\",\"PeriodicalId\":55416,\"journal\":{\"name\":\"Australian Systematic Botany\",\"volume\":\"33 1\",\"pages\":\"110 - 127\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2020-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1071/SB18042\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Australian Systematic Botany\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1071/SB18042\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"EVOLUTIONARY BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Australian Systematic Botany","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1071/SB18042","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"EVOLUTIONARY BIOLOGY","Score":null,"Total":0}
Insights into speciation and species delimitation of closely related eucalypts using an interdisciplinary approach
Abstract. Speciation is a central process in evolutionary biology and is responsible for the diversity of life on Earth. Although there has been much progress in evolutionary research over the past 150 years, understanding the many facets of speciation remains a challenge. In this synthesis, I focus on the use of an interdisciplinary approach to examine speciation and species delimitation in a group of closely related eucalypts called the green ashes (Eucalyptus subgenus Eucalyptus section Eucalyptus). The green ashes comprise tall trees on fertile soils (e.g. the tallest angiosperm in the world, E. regnans), as well as medium trees and mallees on low-nutrient soils. Previous phylogenetic and population-genetics analyses based on genome-wide scans showed that species boundaries in the green ashes are not always consistent with classifications based on morphology and there was evidence of gene flow across lineages. Genomic analyses also suggested that the green ashes were at varying stages of speciation, with some species being highly genetically differentiated, whereas others were at earlier stages on the speciation continuum. A previous common garden study showed that inter-specific differences in seedling traits were significant, with traits such as leaf width being highly plastic across resource treatments for most species. Overall, this synthesis demonstrated that an interdisciplinary approach incorporating phylogenomics, population genomics and a common garden experiment can provide insights into speciation and species delimitation in the green ash eucalypts. Such an approach may be useful in understanding the evolutionary history of other closely related species in Eucalyptus, as well as other groups of organisms.
期刊介绍:
Australian Systematic Botany is an international journal devoted to the systematics, taxonomy, and related aspects of biogeography and evolution of all algae, fungi and plants, including fossils. Descriptive taxonomic papers should normally constitute a comprehensive treatment of a group. Short papers on individual species and nomenclatural papers must contain significant new information of broader interest to be considered. The prestigious L.A.S. Johnson Review Series is published. Other review articles will also be considered. All papers are peer reviewed.
Australian Systematic Botany is published with the endorsement of the Commonwealth Scientific and Industrial Research Organisation (CSIRO) and the Australian Academy of Science.