三维DEM耕作模拟:在黏性和附着力土壤中操作的扫描工具的合适接触模型的验证

IF 2.4 3区 工程技术 Q3 ENGINEERING, ENVIRONMENTAL
Chunling Zhang , Jin Xu , Zihao Zheng , Weiwei Wang , Lichao Liu , Liqing Chen
{"title":"三维DEM耕作模拟:在黏性和附着力土壤中操作的扫描工具的合适接触模型的验证","authors":"Chunling Zhang ,&nbsp;Jin Xu ,&nbsp;Zihao Zheng ,&nbsp;Weiwei Wang ,&nbsp;Lichao Liu ,&nbsp;Liqing Chen","doi":"10.1016/j.jterra.2023.05.003","DOIUrl":null,"url":null,"abstract":"<div><p>Discrete element modelling (DEM) is widely used to estimate soil-tool interaction and tillage forces. To run an accurate simulation, it is essential to determine the appropriate DEM contact model and parameters. Although previous work has been introduced to determine the DEM contact model and parameters, the accuracy of numerical simulation is not high because of the soil differences when tillage tools operate in cohesion and adhesion soil in the middle and lower reaches of the Yangtze River in China. In this paper a Hertz-Mindlin with JKR Cohesion contact model and Linear Cohesion contact model were used to predict soil disturbance area and draft forces. The DEM parameters were determined using cone penetration, and uniaxial unconfined compression as an assisted test. The field experiment using sweep tool was used to validate the simulation results. A good agreement has been showed between simulation results and experiment results. Using verified model, the relative error for the predicted soil disturbance area at speeds of 0.50, 0.75 and 1.00 m/s were 5.3, 3.6 and 7.1 %, respectively. The maximum and average relative errors between simulated and measured draft forces were 6.98 and 3.91%, respectively. The effect of tillage depth and speed at soil disturbance area and draft forces were found which can provide some guidance for the selection of parameters during actual operation.</p></div>","PeriodicalId":50023,"journal":{"name":"Journal of Terramechanics","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Three-dimensional DEM tillage simulation: Validation of a suitable contact model for a sweep tool operating in cohesion and adhesion soil\",\"authors\":\"Chunling Zhang ,&nbsp;Jin Xu ,&nbsp;Zihao Zheng ,&nbsp;Weiwei Wang ,&nbsp;Lichao Liu ,&nbsp;Liqing Chen\",\"doi\":\"10.1016/j.jterra.2023.05.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Discrete element modelling (DEM) is widely used to estimate soil-tool interaction and tillage forces. To run an accurate simulation, it is essential to determine the appropriate DEM contact model and parameters. Although previous work has been introduced to determine the DEM contact model and parameters, the accuracy of numerical simulation is not high because of the soil differences when tillage tools operate in cohesion and adhesion soil in the middle and lower reaches of the Yangtze River in China. In this paper a Hertz-Mindlin with JKR Cohesion contact model and Linear Cohesion contact model were used to predict soil disturbance area and draft forces. The DEM parameters were determined using cone penetration, and uniaxial unconfined compression as an assisted test. The field experiment using sweep tool was used to validate the simulation results. A good agreement has been showed between simulation results and experiment results. Using verified model, the relative error for the predicted soil disturbance area at speeds of 0.50, 0.75 and 1.00 m/s were 5.3, 3.6 and 7.1 %, respectively. The maximum and average relative errors between simulated and measured draft forces were 6.98 and 3.91%, respectively. The effect of tillage depth and speed at soil disturbance area and draft forces were found which can provide some guidance for the selection of parameters during actual operation.</p></div>\",\"PeriodicalId\":50023,\"journal\":{\"name\":\"Journal of Terramechanics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2023-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Terramechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S002248982300037X\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Terramechanics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002248982300037X","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

离散元模型(DEM)被广泛用于估算土壤-工具相互作用和耕作力。为了进行准确的模拟,必须确定合适的DEM接触模型和参数。虽然已有研究成果确定了DEM接触模型和参数,但由于耕作工具在中国长江中下游黏聚性和黏附性土壤中操作时土壤的差异,数值模拟的精度不高。本文采用Hertz-Mindlin结合JKR黏聚力接触模型和线性黏聚力接触模型对土壤扰动面积和牵引力进行了预测。DEM参数采用锥突法确定,单轴无侧限压缩辅助试验。利用扫描工具进行了现场试验,对模拟结果进行了验证。仿真结果与实验结果吻合较好。经验证的模型在0.50、0.75和1.00 m/s速度下预测土壤扰动面积的相对误差分别为5.3%、3.6%和7.1%。模拟与实测的最大相对误差为6.98,平均相对误差为3.91%。研究了耕深、耕速对土壤扰动区和牵引力的影响,为实际操作中参数的选择提供了一定的指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Three-dimensional DEM tillage simulation: Validation of a suitable contact model for a sweep tool operating in cohesion and adhesion soil

Discrete element modelling (DEM) is widely used to estimate soil-tool interaction and tillage forces. To run an accurate simulation, it is essential to determine the appropriate DEM contact model and parameters. Although previous work has been introduced to determine the DEM contact model and parameters, the accuracy of numerical simulation is not high because of the soil differences when tillage tools operate in cohesion and adhesion soil in the middle and lower reaches of the Yangtze River in China. In this paper a Hertz-Mindlin with JKR Cohesion contact model and Linear Cohesion contact model were used to predict soil disturbance area and draft forces. The DEM parameters were determined using cone penetration, and uniaxial unconfined compression as an assisted test. The field experiment using sweep tool was used to validate the simulation results. A good agreement has been showed between simulation results and experiment results. Using verified model, the relative error for the predicted soil disturbance area at speeds of 0.50, 0.75 and 1.00 m/s were 5.3, 3.6 and 7.1 %, respectively. The maximum and average relative errors between simulated and measured draft forces were 6.98 and 3.91%, respectively. The effect of tillage depth and speed at soil disturbance area and draft forces were found which can provide some guidance for the selection of parameters during actual operation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Terramechanics
Journal of Terramechanics 工程技术-工程:环境
CiteScore
5.90
自引率
8.30%
发文量
33
审稿时长
15.3 weeks
期刊介绍: The Journal of Terramechanics is primarily devoted to scientific articles concerned with research, design, and equipment utilization in the field of terramechanics. The Journal of Terramechanics is the leading international journal serving the multidisciplinary global off-road vehicle and soil working machinery industries, and related user community, governmental agencies and universities. The Journal of Terramechanics provides a forum for those involved in research, development, design, innovation, testing, application and utilization of off-road vehicles and soil working machinery, and their sub-systems and components. The Journal presents a cross-section of technical papers, reviews, comments and discussions, and serves as a medium for recording recent progress in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信