半个世纪后的1970年达吉斯坦地震

IF 0.3 Q4 GEOCHEMISTRY & GEOPHYSICS
A. A. Lukk, A. Ya. Sidorin
{"title":"半个世纪后的1970年达吉斯坦地震","authors":"A. A. Lukk,&nbsp;A. Ya. Sidorin","doi":"10.3103/S0747923922070155","DOIUrl":null,"url":null,"abstract":"<p>In connection with the 50th anniversary of the destructive Dagestan earthquake on May 14, 1970, information on the parameters, manifestation features, and consequences of this seismic event was collected and summarized. The Dagestan earthquake became a very important event in the seismic history of the entire Caucasus. The reasons for this were determined by several of its features, the most important being that it was the strongest instrumentally recorded earthquake in the Caucasus at that time, and the nearest seismic station, Makhachkala, was at an epicentral distance of less than 30 km and recorded not only the main shock, but also a strong foreshock with its aftershock sequence. After the earthquake, a temporary seismic network was quickly deployed, which made it possible to trace in detail the development of the aftershock process of the main shock. Based on the literature data, the main parameters of the Dagestan earthquake and its most important consequences are discussed. The most realistic model of the source was constructed by S.S. Arefiev et al. (2004) based on data on the inversion of body waves from this earthquake. According to this model, Dagestan earthquake had a multiple source consisting of three subsources. The initial rupture (subsource), with a horizontal extent of 14 km, was located in the center of the focal zone at a depth of 9 km. The second rupture began about 2 s later, 10 km east of the first, at a depth of about 10 km and with a horizontal extent of 20 km. The third subsource was 10 km west of the first, at a depth of 12 km. The Dagestan earthquake made it possible to significantly refine the regional seismic hazard assessment. This was extremely important in regards to construction of the Chirkey hydroelectric power plant (HPP) with a high-altitude dam (232 m) in the 8-point shaking intensity zone for this seismic event. The creation of the reservoir itself during the construction of the high-pressure concrete dam of the HPP led to the impact of its filling and further seasonal fluctuations in the volume of the reservoir (about 3 billion m<sup>3</sup>) on the seismic activity in the upper part of the crust, with an area of at least 1000 km<sup>2</sup>. This was the reason for the occurrence of induced technogenic earthquakes in this area. The effect of induced seismicity can be dangerous if completion of the dam and creation of the reservoir coincide in time with the natural rhythm of ordinary seismogenesis. It also turned out that powerful shaking of the upper part of the crust during the Dagestan earthquake disrupted the oil production regime in Dagestan.</p>","PeriodicalId":45174,"journal":{"name":"Seismic Instruments","volume":null,"pages":null},"PeriodicalIF":0.3000,"publicationDate":"2023-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The 1970 Dagestan Earthquake a Half-Century Later\",\"authors\":\"A. A. Lukk,&nbsp;A. Ya. Sidorin\",\"doi\":\"10.3103/S0747923922070155\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In connection with the 50th anniversary of the destructive Dagestan earthquake on May 14, 1970, information on the parameters, manifestation features, and consequences of this seismic event was collected and summarized. The Dagestan earthquake became a very important event in the seismic history of the entire Caucasus. The reasons for this were determined by several of its features, the most important being that it was the strongest instrumentally recorded earthquake in the Caucasus at that time, and the nearest seismic station, Makhachkala, was at an epicentral distance of less than 30 km and recorded not only the main shock, but also a strong foreshock with its aftershock sequence. After the earthquake, a temporary seismic network was quickly deployed, which made it possible to trace in detail the development of the aftershock process of the main shock. Based on the literature data, the main parameters of the Dagestan earthquake and its most important consequences are discussed. The most realistic model of the source was constructed by S.S. Arefiev et al. (2004) based on data on the inversion of body waves from this earthquake. According to this model, Dagestan earthquake had a multiple source consisting of three subsources. The initial rupture (subsource), with a horizontal extent of 14 km, was located in the center of the focal zone at a depth of 9 km. The second rupture began about 2 s later, 10 km east of the first, at a depth of about 10 km and with a horizontal extent of 20 km. The third subsource was 10 km west of the first, at a depth of 12 km. The Dagestan earthquake made it possible to significantly refine the regional seismic hazard assessment. This was extremely important in regards to construction of the Chirkey hydroelectric power plant (HPP) with a high-altitude dam (232 m) in the 8-point shaking intensity zone for this seismic event. The creation of the reservoir itself during the construction of the high-pressure concrete dam of the HPP led to the impact of its filling and further seasonal fluctuations in the volume of the reservoir (about 3 billion m<sup>3</sup>) on the seismic activity in the upper part of the crust, with an area of at least 1000 km<sup>2</sup>. This was the reason for the occurrence of induced technogenic earthquakes in this area. The effect of induced seismicity can be dangerous if completion of the dam and creation of the reservoir coincide in time with the natural rhythm of ordinary seismogenesis. It also turned out that powerful shaking of the upper part of the crust during the Dagestan earthquake disrupted the oil production regime in Dagestan.</p>\",\"PeriodicalId\":45174,\"journal\":{\"name\":\"Seismic Instruments\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2023-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Seismic Instruments\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.3103/S0747923922070155\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Seismic Instruments","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.3103/S0747923922070155","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

为纪念1970年5月14日达吉斯坦大地震50周年,收集和总结了这次地震的参数、表现特征和后果等方面的资料。达吉斯坦地震成为整个高加索地区地震史上非常重要的事件。造成这种情况的原因是由它的几个特征决定的,最重要的是它是当时高加索地区仪器记录的最强地震,最近的地震站Makhachkala的震中距离不到30公里,不仅记录了主震,而且还记录了强烈的前震及其余震序列。地震发生后,迅速部署了临时地震台网,使详细跟踪主震余震过程的发展成为可能。在文献资料的基础上,讨论了达吉斯坦地震的主要参数及其主要后果。S.S. Arefiev et al.(2004)基于本次地震体波反演数据建立了最真实的震源模型。根据这个模型,达吉斯坦地震有一个由三个子震源组成的多震源。最初的破裂(次震源)位于震源带的中心,深度为9公里,水平范围为14公里。第二次破裂大约在2秒后开始,在第一次破裂以东10公里处,深度约10公里,水平范围为20公里。第三次震源位于第一次震源以西10公里处,震源深度12公里。达吉斯坦地震使大大改进区域地震危险性评估成为可能。这对于Chirkey水电站(HPP)的建设来说是非常重要的,该水电站的高海拔水坝(232米)位于本次地震的8点震动强度区。在高压混凝土坝建设过程中,水库本身的形成导致水库的填充和水库体积的进一步季节性波动(约30亿立方米)对地壳上部地震活动的影响,面积至少为1000平方公里。这是该地区发生诱发技术地震的原因。如果大坝的建成和水库的建立与普通地震发生的自然节奏同时发生,诱发地震活动的影响可能是危险的。结果还表明,达吉斯坦地震期间地壳上部的强烈震动扰乱了达吉斯坦的石油生产制度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

The 1970 Dagestan Earthquake a Half-Century Later

The 1970 Dagestan Earthquake a Half-Century Later

In connection with the 50th anniversary of the destructive Dagestan earthquake on May 14, 1970, information on the parameters, manifestation features, and consequences of this seismic event was collected and summarized. The Dagestan earthquake became a very important event in the seismic history of the entire Caucasus. The reasons for this were determined by several of its features, the most important being that it was the strongest instrumentally recorded earthquake in the Caucasus at that time, and the nearest seismic station, Makhachkala, was at an epicentral distance of less than 30 km and recorded not only the main shock, but also a strong foreshock with its aftershock sequence. After the earthquake, a temporary seismic network was quickly deployed, which made it possible to trace in detail the development of the aftershock process of the main shock. Based on the literature data, the main parameters of the Dagestan earthquake and its most important consequences are discussed. The most realistic model of the source was constructed by S.S. Arefiev et al. (2004) based on data on the inversion of body waves from this earthquake. According to this model, Dagestan earthquake had a multiple source consisting of three subsources. The initial rupture (subsource), with a horizontal extent of 14 km, was located in the center of the focal zone at a depth of 9 km. The second rupture began about 2 s later, 10 km east of the first, at a depth of about 10 km and with a horizontal extent of 20 km. The third subsource was 10 km west of the first, at a depth of 12 km. The Dagestan earthquake made it possible to significantly refine the regional seismic hazard assessment. This was extremely important in regards to construction of the Chirkey hydroelectric power plant (HPP) with a high-altitude dam (232 m) in the 8-point shaking intensity zone for this seismic event. The creation of the reservoir itself during the construction of the high-pressure concrete dam of the HPP led to the impact of its filling and further seasonal fluctuations in the volume of the reservoir (about 3 billion m3) on the seismic activity in the upper part of the crust, with an area of at least 1000 km2. This was the reason for the occurrence of induced technogenic earthquakes in this area. The effect of induced seismicity can be dangerous if completion of the dam and creation of the reservoir coincide in time with the natural rhythm of ordinary seismogenesis. It also turned out that powerful shaking of the upper part of the crust during the Dagestan earthquake disrupted the oil production regime in Dagestan.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Seismic Instruments
Seismic Instruments GEOCHEMISTRY & GEOPHYSICS-
自引率
44.40%
发文量
45
期刊介绍: Seismic Instruments is a journal devoted to the description of geophysical instruments used in seismic research. In addition to covering the actual instruments for registering seismic waves, substantial room is devoted to solving instrumental-methodological problems of geophysical monitoring, applying various methods that are used to search for earthquake precursors, to studying earthquake nucleation processes and to monitoring natural and technogenous processes. The description of the construction, working elements, and technical characteristics of the instruments, as well as some results of implementation of the instruments and interpretation of the results are given. Attention is paid to seismic monitoring data and earthquake catalog quality Analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信