{"title":"android智能手机多普勒观测的特征化和位置辅助性能分析","authors":"Zihan Peng, C. Gao, Hua Zou, Rui Shang, Qi Liu, Wu Zhao","doi":"10.1017/S0373463323000115","DOIUrl":null,"url":null,"abstract":"Abstract It has been acknowledged that the Doppler is beneficial to the GNSS positioning of smartphones. However, analysis of Doppler precision on smartphones is insufficient. In this paper, we focus on the characteristic analysis of the raw Doppler measurement from Android smartphones. A comprehensive investigation of the Doppler was conducted. The results illustrate that the availability of Doppler is stable and higher than that of carrier measurements, which means that the Doppler-smoothed code (DSC) method is more effective. However, there is a constant bias between the Doppler and the code rate in Xiaomi MI8, which indicates that extra processing of the DSC method is necessary for this phone. Additionally, it is demonstrated that the relationship between the Doppler and C/N0 can be expressed as an exponential function, and the fitting parameters are provided. The numerical experiment in car-borne and hand-held scenes was conducted for evaluating the performance of the Doppler-aided positioning algorithm. For positioning, the improvement reaches 37 ⋅ 69%/37 ⋅ 14%/26 ⋅ 61% in the east, north and up components, respectively, after applying the Doppler aiding. For velocity estimation, the improvement reaches 29 ⋅ 62%/39 ⋅ 63%/29 ⋅ 37% in the three components, respectively.","PeriodicalId":50120,"journal":{"name":"Journal of Navigation","volume":"76 1","pages":"375 - 393"},"PeriodicalIF":1.9000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Characterisation and position-aiding performance analysis of Doppler observation from android smartphones\",\"authors\":\"Zihan Peng, C. Gao, Hua Zou, Rui Shang, Qi Liu, Wu Zhao\",\"doi\":\"10.1017/S0373463323000115\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract It has been acknowledged that the Doppler is beneficial to the GNSS positioning of smartphones. However, analysis of Doppler precision on smartphones is insufficient. In this paper, we focus on the characteristic analysis of the raw Doppler measurement from Android smartphones. A comprehensive investigation of the Doppler was conducted. The results illustrate that the availability of Doppler is stable and higher than that of carrier measurements, which means that the Doppler-smoothed code (DSC) method is more effective. However, there is a constant bias between the Doppler and the code rate in Xiaomi MI8, which indicates that extra processing of the DSC method is necessary for this phone. Additionally, it is demonstrated that the relationship between the Doppler and C/N0 can be expressed as an exponential function, and the fitting parameters are provided. The numerical experiment in car-borne and hand-held scenes was conducted for evaluating the performance of the Doppler-aided positioning algorithm. For positioning, the improvement reaches 37 ⋅ 69%/37 ⋅ 14%/26 ⋅ 61% in the east, north and up components, respectively, after applying the Doppler aiding. For velocity estimation, the improvement reaches 29 ⋅ 62%/39 ⋅ 63%/29 ⋅ 37% in the three components, respectively.\",\"PeriodicalId\":50120,\"journal\":{\"name\":\"Journal of Navigation\",\"volume\":\"76 1\",\"pages\":\"375 - 393\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Navigation\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1017/S0373463323000115\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MARINE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Navigation","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1017/S0373463323000115","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MARINE","Score":null,"Total":0}
Characterisation and position-aiding performance analysis of Doppler observation from android smartphones
Abstract It has been acknowledged that the Doppler is beneficial to the GNSS positioning of smartphones. However, analysis of Doppler precision on smartphones is insufficient. In this paper, we focus on the characteristic analysis of the raw Doppler measurement from Android smartphones. A comprehensive investigation of the Doppler was conducted. The results illustrate that the availability of Doppler is stable and higher than that of carrier measurements, which means that the Doppler-smoothed code (DSC) method is more effective. However, there is a constant bias between the Doppler and the code rate in Xiaomi MI8, which indicates that extra processing of the DSC method is necessary for this phone. Additionally, it is demonstrated that the relationship between the Doppler and C/N0 can be expressed as an exponential function, and the fitting parameters are provided. The numerical experiment in car-borne and hand-held scenes was conducted for evaluating the performance of the Doppler-aided positioning algorithm. For positioning, the improvement reaches 37 ⋅ 69%/37 ⋅ 14%/26 ⋅ 61% in the east, north and up components, respectively, after applying the Doppler aiding. For velocity estimation, the improvement reaches 29 ⋅ 62%/39 ⋅ 63%/29 ⋅ 37% in the three components, respectively.
期刊介绍:
The Journal of Navigation contains original papers on the science of navigation by man and animals over land and sea and through air and space, including a selection of papers presented at meetings of the Institute and other organisations associated with navigation. Papers cover every aspect of navigation, from the highly technical to the descriptive and historical. Subjects include electronics, astronomy, mathematics, cartography, command and control, psychology and zoology, operational research, risk analysis, theoretical physics, operation in hostile environments, instrumentation, ergonomics, financial planning and law. The journal also publishes selected papers and reports from the Institute’s special interest groups. Contributions come from all parts of the world.