{"title":"论向量束的EO $\\ mathm {EO}$ -可定向性","authors":"P. Bhattacharya, H. Chatham","doi":"10.1112/topo.12265","DOIUrl":null,"url":null,"abstract":"<p>We study the orientability of vector bundles with respect to a family of cohomology theories called <math>\n <semantics>\n <mi>EO</mi>\n <annotation>$\\mathrm{EO}$</annotation>\n </semantics></math>-theories. The <math>\n <semantics>\n <mi>EO</mi>\n <annotation>$\\mathrm{EO}$</annotation>\n </semantics></math>-theories are higher height analogues of real <math>\n <semantics>\n <mi>K</mi>\n <annotation>$\\mathrm{K}$</annotation>\n </semantics></math>-theory <math>\n <semantics>\n <mi>KO</mi>\n <annotation>$\\mathrm{KO}$</annotation>\n </semantics></math>. For each <math>\n <semantics>\n <mi>EO</mi>\n <annotation>$\\mathrm{EO}$</annotation>\n </semantics></math>-theory, we prove that the direct sum of <math>\n <semantics>\n <mi>i</mi>\n <annotation>$i$</annotation>\n </semantics></math> copies of any vector bundle is <math>\n <semantics>\n <mi>EO</mi>\n <annotation>$\\mathrm{EO}$</annotation>\n </semantics></math>-orientable for some specific integer <math>\n <semantics>\n <mi>i</mi>\n <annotation>$i$</annotation>\n </semantics></math>. Using a splitting principal, we reduce to the case of the canonical line bundle over <math>\n <semantics>\n <msup>\n <mi>CP</mi>\n <mi>∞</mi>\n </msup>\n <annotation>$\\mathbb {CP}^{\\infty }$</annotation>\n </semantics></math>. Our method involves understanding the action of an order <math>\n <semantics>\n <mi>p</mi>\n <annotation>$p$</annotation>\n </semantics></math> subgroup of the Morava stabilizer group on the Morava <math>\n <semantics>\n <mi>E</mi>\n <annotation>$\\mathrm{E}$</annotation>\n </semantics></math>-theory of <math>\n <semantics>\n <msup>\n <mi>CP</mi>\n <mi>∞</mi>\n </msup>\n <annotation>$\\mathbb {CP}^{\\infty }$</annotation>\n </semantics></math>. Our calculations have another application: We determine the homotopy type of the <math>\n <semantics>\n <msup>\n <mi>S</mi>\n <mn>1</mn>\n </msup>\n <annotation>$\\mathrm{S}^{1}$</annotation>\n </semantics></math>-Tate spectrum associated to the trivial action of <math>\n <semantics>\n <msup>\n <mi>S</mi>\n <mn>1</mn>\n </msup>\n <annotation>$\\mathrm{S}^{1}$</annotation>\n </semantics></math> on all <math>\n <semantics>\n <mi>EO</mi>\n <annotation>$\\mathrm{EO}$</annotation>\n </semantics></math>-theories.</p>","PeriodicalId":56114,"journal":{"name":"Journal of Topology","volume":"15 4","pages":"2017-2044"},"PeriodicalIF":0.8000,"publicationDate":"2022-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"On the \\n \\n EO\\n $\\\\mathrm{EO}$\\n -orientability of vector bundles\",\"authors\":\"P. Bhattacharya, H. Chatham\",\"doi\":\"10.1112/topo.12265\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We study the orientability of vector bundles with respect to a family of cohomology theories called <math>\\n <semantics>\\n <mi>EO</mi>\\n <annotation>$\\\\mathrm{EO}$</annotation>\\n </semantics></math>-theories. The <math>\\n <semantics>\\n <mi>EO</mi>\\n <annotation>$\\\\mathrm{EO}$</annotation>\\n </semantics></math>-theories are higher height analogues of real <math>\\n <semantics>\\n <mi>K</mi>\\n <annotation>$\\\\mathrm{K}$</annotation>\\n </semantics></math>-theory <math>\\n <semantics>\\n <mi>KO</mi>\\n <annotation>$\\\\mathrm{KO}$</annotation>\\n </semantics></math>. For each <math>\\n <semantics>\\n <mi>EO</mi>\\n <annotation>$\\\\mathrm{EO}$</annotation>\\n </semantics></math>-theory, we prove that the direct sum of <math>\\n <semantics>\\n <mi>i</mi>\\n <annotation>$i$</annotation>\\n </semantics></math> copies of any vector bundle is <math>\\n <semantics>\\n <mi>EO</mi>\\n <annotation>$\\\\mathrm{EO}$</annotation>\\n </semantics></math>-orientable for some specific integer <math>\\n <semantics>\\n <mi>i</mi>\\n <annotation>$i$</annotation>\\n </semantics></math>. Using a splitting principal, we reduce to the case of the canonical line bundle over <math>\\n <semantics>\\n <msup>\\n <mi>CP</mi>\\n <mi>∞</mi>\\n </msup>\\n <annotation>$\\\\mathbb {CP}^{\\\\infty }$</annotation>\\n </semantics></math>. Our method involves understanding the action of an order <math>\\n <semantics>\\n <mi>p</mi>\\n <annotation>$p$</annotation>\\n </semantics></math> subgroup of the Morava stabilizer group on the Morava <math>\\n <semantics>\\n <mi>E</mi>\\n <annotation>$\\\\mathrm{E}$</annotation>\\n </semantics></math>-theory of <math>\\n <semantics>\\n <msup>\\n <mi>CP</mi>\\n <mi>∞</mi>\\n </msup>\\n <annotation>$\\\\mathbb {CP}^{\\\\infty }$</annotation>\\n </semantics></math>. Our calculations have another application: We determine the homotopy type of the <math>\\n <semantics>\\n <msup>\\n <mi>S</mi>\\n <mn>1</mn>\\n </msup>\\n <annotation>$\\\\mathrm{S}^{1}$</annotation>\\n </semantics></math>-Tate spectrum associated to the trivial action of <math>\\n <semantics>\\n <msup>\\n <mi>S</mi>\\n <mn>1</mn>\\n </msup>\\n <annotation>$\\\\mathrm{S}^{1}$</annotation>\\n </semantics></math> on all <math>\\n <semantics>\\n <mi>EO</mi>\\n <annotation>$\\\\mathrm{EO}$</annotation>\\n </semantics></math>-theories.</p>\",\"PeriodicalId\":56114,\"journal\":{\"name\":\"Journal of Topology\",\"volume\":\"15 4\",\"pages\":\"2017-2044\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2022-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Topology\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1112/topo.12265\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Topology","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/topo.12265","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
On the
EO
$\mathrm{EO}$
-orientability of vector bundles
We study the orientability of vector bundles with respect to a family of cohomology theories called -theories. The -theories are higher height analogues of real -theory . For each -theory, we prove that the direct sum of copies of any vector bundle is -orientable for some specific integer . Using a splitting principal, we reduce to the case of the canonical line bundle over . Our method involves understanding the action of an order subgroup of the Morava stabilizer group on the Morava -theory of . Our calculations have another application: We determine the homotopy type of the -Tate spectrum associated to the trivial action of on all -theories.
期刊介绍:
The Journal of Topology publishes papers of high quality and significance in topology, geometry and adjacent areas of mathematics. Interesting, important and often unexpected links connect topology and geometry with many other parts of mathematics, and the editors welcome submissions on exciting new advances concerning such links, as well as those in the core subject areas of the journal.
The Journal of Topology was founded in 2008. It is published quarterly with articles published individually online prior to appearing in a printed issue.