{"title":"论向量束的EO $\\ mathm {EO}$ -可定向性","authors":"P. Bhattacharya, H. Chatham","doi":"10.1112/topo.12265","DOIUrl":null,"url":null,"abstract":"<p>We study the orientability of vector bundles with respect to a family of cohomology theories called <math>\n <semantics>\n <mi>EO</mi>\n <annotation>$\\mathrm{EO}$</annotation>\n </semantics></math>-theories. The <math>\n <semantics>\n <mi>EO</mi>\n <annotation>$\\mathrm{EO}$</annotation>\n </semantics></math>-theories are higher height analogues of real <math>\n <semantics>\n <mi>K</mi>\n <annotation>$\\mathrm{K}$</annotation>\n </semantics></math>-theory <math>\n <semantics>\n <mi>KO</mi>\n <annotation>$\\mathrm{KO}$</annotation>\n </semantics></math>. For each <math>\n <semantics>\n <mi>EO</mi>\n <annotation>$\\mathrm{EO}$</annotation>\n </semantics></math>-theory, we prove that the direct sum of <math>\n <semantics>\n <mi>i</mi>\n <annotation>$i$</annotation>\n </semantics></math> copies of any vector bundle is <math>\n <semantics>\n <mi>EO</mi>\n <annotation>$\\mathrm{EO}$</annotation>\n </semantics></math>-orientable for some specific integer <math>\n <semantics>\n <mi>i</mi>\n <annotation>$i$</annotation>\n </semantics></math>. Using a splitting principal, we reduce to the case of the canonical line bundle over <math>\n <semantics>\n <msup>\n <mi>CP</mi>\n <mi>∞</mi>\n </msup>\n <annotation>$\\mathbb {CP}^{\\infty }$</annotation>\n </semantics></math>. Our method involves understanding the action of an order <math>\n <semantics>\n <mi>p</mi>\n <annotation>$p$</annotation>\n </semantics></math> subgroup of the Morava stabilizer group on the Morava <math>\n <semantics>\n <mi>E</mi>\n <annotation>$\\mathrm{E}$</annotation>\n </semantics></math>-theory of <math>\n <semantics>\n <msup>\n <mi>CP</mi>\n <mi>∞</mi>\n </msup>\n <annotation>$\\mathbb {CP}^{\\infty }$</annotation>\n </semantics></math>. Our calculations have another application: We determine the homotopy type of the <math>\n <semantics>\n <msup>\n <mi>S</mi>\n <mn>1</mn>\n </msup>\n <annotation>$\\mathrm{S}^{1}$</annotation>\n </semantics></math>-Tate spectrum associated to the trivial action of <math>\n <semantics>\n <msup>\n <mi>S</mi>\n <mn>1</mn>\n </msup>\n <annotation>$\\mathrm{S}^{1}$</annotation>\n </semantics></math> on all <math>\n <semantics>\n <mi>EO</mi>\n <annotation>$\\mathrm{EO}$</annotation>\n </semantics></math>-theories.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"On the \\n \\n EO\\n $\\\\mathrm{EO}$\\n -orientability of vector bundles\",\"authors\":\"P. Bhattacharya, H. Chatham\",\"doi\":\"10.1112/topo.12265\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We study the orientability of vector bundles with respect to a family of cohomology theories called <math>\\n <semantics>\\n <mi>EO</mi>\\n <annotation>$\\\\mathrm{EO}$</annotation>\\n </semantics></math>-theories. The <math>\\n <semantics>\\n <mi>EO</mi>\\n <annotation>$\\\\mathrm{EO}$</annotation>\\n </semantics></math>-theories are higher height analogues of real <math>\\n <semantics>\\n <mi>K</mi>\\n <annotation>$\\\\mathrm{K}$</annotation>\\n </semantics></math>-theory <math>\\n <semantics>\\n <mi>KO</mi>\\n <annotation>$\\\\mathrm{KO}$</annotation>\\n </semantics></math>. For each <math>\\n <semantics>\\n <mi>EO</mi>\\n <annotation>$\\\\mathrm{EO}$</annotation>\\n </semantics></math>-theory, we prove that the direct sum of <math>\\n <semantics>\\n <mi>i</mi>\\n <annotation>$i$</annotation>\\n </semantics></math> copies of any vector bundle is <math>\\n <semantics>\\n <mi>EO</mi>\\n <annotation>$\\\\mathrm{EO}$</annotation>\\n </semantics></math>-orientable for some specific integer <math>\\n <semantics>\\n <mi>i</mi>\\n <annotation>$i$</annotation>\\n </semantics></math>. Using a splitting principal, we reduce to the case of the canonical line bundle over <math>\\n <semantics>\\n <msup>\\n <mi>CP</mi>\\n <mi>∞</mi>\\n </msup>\\n <annotation>$\\\\mathbb {CP}^{\\\\infty }$</annotation>\\n </semantics></math>. Our method involves understanding the action of an order <math>\\n <semantics>\\n <mi>p</mi>\\n <annotation>$p$</annotation>\\n </semantics></math> subgroup of the Morava stabilizer group on the Morava <math>\\n <semantics>\\n <mi>E</mi>\\n <annotation>$\\\\mathrm{E}$</annotation>\\n </semantics></math>-theory of <math>\\n <semantics>\\n <msup>\\n <mi>CP</mi>\\n <mi>∞</mi>\\n </msup>\\n <annotation>$\\\\mathbb {CP}^{\\\\infty }$</annotation>\\n </semantics></math>. Our calculations have another application: We determine the homotopy type of the <math>\\n <semantics>\\n <msup>\\n <mi>S</mi>\\n <mn>1</mn>\\n </msup>\\n <annotation>$\\\\mathrm{S}^{1}$</annotation>\\n </semantics></math>-Tate spectrum associated to the trivial action of <math>\\n <semantics>\\n <msup>\\n <mi>S</mi>\\n <mn>1</mn>\\n </msup>\\n <annotation>$\\\\mathrm{S}^{1}$</annotation>\\n </semantics></math> on all <math>\\n <semantics>\\n <mi>EO</mi>\\n <annotation>$\\\\mathrm{EO}$</annotation>\\n </semantics></math>-theories.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1112/topo.12265\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/topo.12265","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
On the
EO
$\mathrm{EO}$
-orientability of vector bundles
We study the orientability of vector bundles with respect to a family of cohomology theories called -theories. The -theories are higher height analogues of real -theory . For each -theory, we prove that the direct sum of copies of any vector bundle is -orientable for some specific integer . Using a splitting principal, we reduce to the case of the canonical line bundle over . Our method involves understanding the action of an order subgroup of the Morava stabilizer group on the Morava -theory of . Our calculations have another application: We determine the homotopy type of the -Tate spectrum associated to the trivial action of on all -theories.