外纯量子子群与协代数共域

Pub Date : 2023-07-08 DOI:10.1007/s10468-023-10219-9
Alexandru Chirvasitu
{"title":"外纯量子子群与协代数共域","authors":"Alexandru Chirvasitu","doi":"10.1007/s10468-023-10219-9","DOIUrl":null,"url":null,"abstract":"<div><p>We prove a number of results concerning monomorphisms, epimorphisms, dominions and codominions in categories of coalgebras. Examples include: (a) representation-theoretic characterizations of monomorphisms in all of these categories that when the Hopf algebras in question are commutative specialize back to the familiar necessary and sufficient conditions (due to Bien-Borel) that a linear algebraic subgroup be epimorphically embedded; (b) the fact that a morphism in the category of (cocommutative) coalgebras, (cocommutative) bialgebras, and a host of categories of Hopf algebras has the same codominion in any of these categories which contain it; (c) the invariance of the Hopf algebra or bialgebra (co)dominion construction under field extension, again mimicking the well-known corresponding algebraic-group result; (d) the fact that surjections of coalgebras, bialgebras or Hopf algebras are regular epimorphisms (i.e. coequalizers) provided the codomain is cosemisimple; (e) in particular, the fact that embeddings of compact quantum groups are equalizers in the category thereof, generalizing analogous results on (plain) compact groups; (f) coalgebra-limit preservation results for scalar-extension functors (e.g. extending scalars along a field extension <span>\\(\\Bbbk \\le \\Bbbk '\\)</span> is a right adjoint on the category of <span>\\(\\Bbbk \\)</span>-coalgebras).</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Epimorphic Quantum Subgroups and Coalgebra Codominions\",\"authors\":\"Alexandru Chirvasitu\",\"doi\":\"10.1007/s10468-023-10219-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We prove a number of results concerning monomorphisms, epimorphisms, dominions and codominions in categories of coalgebras. Examples include: (a) representation-theoretic characterizations of monomorphisms in all of these categories that when the Hopf algebras in question are commutative specialize back to the familiar necessary and sufficient conditions (due to Bien-Borel) that a linear algebraic subgroup be epimorphically embedded; (b) the fact that a morphism in the category of (cocommutative) coalgebras, (cocommutative) bialgebras, and a host of categories of Hopf algebras has the same codominion in any of these categories which contain it; (c) the invariance of the Hopf algebra or bialgebra (co)dominion construction under field extension, again mimicking the well-known corresponding algebraic-group result; (d) the fact that surjections of coalgebras, bialgebras or Hopf algebras are regular epimorphisms (i.e. coequalizers) provided the codomain is cosemisimple; (e) in particular, the fact that embeddings of compact quantum groups are equalizers in the category thereof, generalizing analogous results on (plain) compact groups; (f) coalgebra-limit preservation results for scalar-extension functors (e.g. extending scalars along a field extension <span>\\\\(\\\\Bbbk \\\\le \\\\Bbbk '\\\\)</span> is a right adjoint on the category of <span>\\\\(\\\\Bbbk \\\\)</span>-coalgebras).</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10468-023-10219-9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10468-023-10219-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们证明了有关煤系范畴中的单态、外态、辖域和共态的一系列结果。例子包括(a) 所有这些范畴中单态的表征理论特征,当有关的霍普夫代数是交换代数时,这些特征又回到了我们熟悉的必要条件和充分条件(由于 Bien-Borel),即线性代数子群是外显嵌入的;(b) 事实上,在(交换)煤基、(交换)双基以及霍普夫代数的一系列范畴中,一个态在任何包含它的范畴中都有相同的同分异构体;(c) 霍普夫代数或双代数(共)支配构造在域扩展下的不变性,这也是模仿著名的相应代数群结果; (d) 煤层、双层或霍普夫代数的投射是正则外变形(即共相等)。(e) 特别是紧凑量子群的嵌入是其范畴中的等化器这一事实,概括了(普通)紧凑群上的类似结果;(f) 标量扩展函子的煤代数极限保持结果(例如,沿场扩展标量);(g) 煤代数极限保持结果(例如,沿场扩展标量);(h) 煤代数极限保持结果(例如,沿场扩展标量);(i) 煤代数极限保持结果(例如,沿场扩展标量);(j) 煤代数极限保持结果(例如,沿场扩展标量)。例如,沿着场扩展(\Bbbk \le \Bbbk '\)扩展标量是 \(\Bbbk \)-元组范畴上的右堧)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Epimorphic Quantum Subgroups and Coalgebra Codominions

We prove a number of results concerning monomorphisms, epimorphisms, dominions and codominions in categories of coalgebras. Examples include: (a) representation-theoretic characterizations of monomorphisms in all of these categories that when the Hopf algebras in question are commutative specialize back to the familiar necessary and sufficient conditions (due to Bien-Borel) that a linear algebraic subgroup be epimorphically embedded; (b) the fact that a morphism in the category of (cocommutative) coalgebras, (cocommutative) bialgebras, and a host of categories of Hopf algebras has the same codominion in any of these categories which contain it; (c) the invariance of the Hopf algebra or bialgebra (co)dominion construction under field extension, again mimicking the well-known corresponding algebraic-group result; (d) the fact that surjections of coalgebras, bialgebras or Hopf algebras are regular epimorphisms (i.e. coequalizers) provided the codomain is cosemisimple; (e) in particular, the fact that embeddings of compact quantum groups are equalizers in the category thereof, generalizing analogous results on (plain) compact groups; (f) coalgebra-limit preservation results for scalar-extension functors (e.g. extending scalars along a field extension \(\Bbbk \le \Bbbk '\) is a right adjoint on the category of \(\Bbbk \)-coalgebras).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信