{"title":"通用企业责任理论在临床人工智能系统中的应用","authors":"Benny Chan","doi":"10.1017/amj.2022.1","DOIUrl":null,"url":null,"abstract":"The advent of artificial intelligence (“AI”) holds great potential to improve clinical diagnostics. At the same time, there are important questions of liability for harms arising from the use of this technology. Due to their complexity, opacity, and lack of foreseeability, AI systems are not easily accommodated by traditional liability frameworks. This difficulty is compounded in the health care space where various actors, namely physicians and health care organizations, are subject to distinct but interrelated legal duties regarding the use of health technology. Without a principled way to apportion responsibility among these actors, patients may find it difficult to recover for injuries. In this Article, I propose that physicians, manufacturers of clinical AI systems, and hospitals be considered a common enterprise for the purposes of liability. This proposed framework helps facilitate the apportioning of responsibility among disparate actors under a single legal theory. Such an approach responds to concerns about the responsibility gap engendered by clinical AI technology as it shifts away from individualistic notions of responsibility, embodied by negligence and products liability, toward a more distributed conception. In addition to favoring plaintiff recovery, a common enterprise strict liability approach would create strong incentives for the relevant actors to take care.","PeriodicalId":7680,"journal":{"name":"American Journal of Law & Medicine","volume":"47 1","pages":"351 - 385"},"PeriodicalIF":0.5000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Applying a Common Enterprise Theory of Liability to Clinical AI Systems\",\"authors\":\"Benny Chan\",\"doi\":\"10.1017/amj.2022.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The advent of artificial intelligence (“AI”) holds great potential to improve clinical diagnostics. At the same time, there are important questions of liability for harms arising from the use of this technology. Due to their complexity, opacity, and lack of foreseeability, AI systems are not easily accommodated by traditional liability frameworks. This difficulty is compounded in the health care space where various actors, namely physicians and health care organizations, are subject to distinct but interrelated legal duties regarding the use of health technology. Without a principled way to apportion responsibility among these actors, patients may find it difficult to recover for injuries. In this Article, I propose that physicians, manufacturers of clinical AI systems, and hospitals be considered a common enterprise for the purposes of liability. This proposed framework helps facilitate the apportioning of responsibility among disparate actors under a single legal theory. Such an approach responds to concerns about the responsibility gap engendered by clinical AI technology as it shifts away from individualistic notions of responsibility, embodied by negligence and products liability, toward a more distributed conception. In addition to favoring plaintiff recovery, a common enterprise strict liability approach would create strong incentives for the relevant actors to take care.\",\"PeriodicalId\":7680,\"journal\":{\"name\":\"American Journal of Law & Medicine\",\"volume\":\"47 1\",\"pages\":\"351 - 385\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2021-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American Journal of Law & Medicine\",\"FirstCategoryId\":\"90\",\"ListUrlMain\":\"https://doi.org/10.1017/amj.2022.1\",\"RegionNum\":4,\"RegionCategory\":\"社会学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"LAW\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Journal of Law & Medicine","FirstCategoryId":"90","ListUrlMain":"https://doi.org/10.1017/amj.2022.1","RegionNum":4,"RegionCategory":"社会学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"LAW","Score":null,"Total":0}
Applying a Common Enterprise Theory of Liability to Clinical AI Systems
The advent of artificial intelligence (“AI”) holds great potential to improve clinical diagnostics. At the same time, there are important questions of liability for harms arising from the use of this technology. Due to their complexity, opacity, and lack of foreseeability, AI systems are not easily accommodated by traditional liability frameworks. This difficulty is compounded in the health care space where various actors, namely physicians and health care organizations, are subject to distinct but interrelated legal duties regarding the use of health technology. Without a principled way to apportion responsibility among these actors, patients may find it difficult to recover for injuries. In this Article, I propose that physicians, manufacturers of clinical AI systems, and hospitals be considered a common enterprise for the purposes of liability. This proposed framework helps facilitate the apportioning of responsibility among disparate actors under a single legal theory. Such an approach responds to concerns about the responsibility gap engendered by clinical AI technology as it shifts away from individualistic notions of responsibility, embodied by negligence and products liability, toward a more distributed conception. In addition to favoring plaintiff recovery, a common enterprise strict liability approach would create strong incentives for the relevant actors to take care.
期刊介绍:
desde Enero 2004 Último Numero: Octubre 2008 AJLM will solicit blind comments from expert peer reviewers, including faculty members of our editorial board, as well as from other preeminent health law and public policy academics and professionals from across the country and around the world.