洛伦兹流形中的紧致零超曲面

IF 0.5 4区 数学 Q3 MATHEMATICS
C. Atindogbe, M. Gutiérrez, R. Hounnonkpe
{"title":"洛伦兹流形中的紧致零超曲面","authors":"C. Atindogbe, M. Gutiérrez, R. Hounnonkpe","doi":"10.1515/advgeom-2021-0001","DOIUrl":null,"url":null,"abstract":"Abstract We show how the topological and geometric properties of the family of null hypersurfaces in a Lorentzian manifold are related with the properties of the ambient manifold itself. In particular, we focus in how the presence of global symmetries and curvature conditions restrict the existence of compact null hypersurfaces. We use these results to show the influence on the existence of compact totally umbilic null hypersurfaceswhich are not totally geodesic. Finally we describe the restrictions that they impose in causality theory.","PeriodicalId":7335,"journal":{"name":"Advances in Geometry","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2021-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/advgeom-2021-0001","citationCount":"4","resultStr":"{\"title\":\"Compact null hypersurfaces in Lorentzian manifolds\",\"authors\":\"C. Atindogbe, M. Gutiérrez, R. Hounnonkpe\",\"doi\":\"10.1515/advgeom-2021-0001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We show how the topological and geometric properties of the family of null hypersurfaces in a Lorentzian manifold are related with the properties of the ambient manifold itself. In particular, we focus in how the presence of global symmetries and curvature conditions restrict the existence of compact null hypersurfaces. We use these results to show the influence on the existence of compact totally umbilic null hypersurfaceswhich are not totally geodesic. Finally we describe the restrictions that they impose in causality theory.\",\"PeriodicalId\":7335,\"journal\":{\"name\":\"Advances in Geometry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2021-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1515/advgeom-2021-0001\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/advgeom-2021-0001\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/advgeom-2021-0001","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 4

摘要

摘要我们展示了洛伦兹流形中零超曲面族的拓扑和几何性质如何与环境流形本身的性质相关。特别地,我们关注全局对称性和曲率条件的存在如何限制紧致零超曲面的存在。我们用这些结果证明了对非全测地线的紧致全脐零超曲面存在性的影响。最后,我们描述了它们在因果关系理论中施加的限制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Compact null hypersurfaces in Lorentzian manifolds
Abstract We show how the topological and geometric properties of the family of null hypersurfaces in a Lorentzian manifold are related with the properties of the ambient manifold itself. In particular, we focus in how the presence of global symmetries and curvature conditions restrict the existence of compact null hypersurfaces. We use these results to show the influence on the existence of compact totally umbilic null hypersurfaceswhich are not totally geodesic. Finally we describe the restrictions that they impose in causality theory.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Geometry
Advances in Geometry 数学-数学
CiteScore
1.00
自引率
0.00%
发文量
31
审稿时长
>12 weeks
期刊介绍: Advances in Geometry is a mathematical journal for the publication of original research articles of excellent quality in the area of geometry. Geometry is a field of long standing-tradition and eminent importance. The study of space and spatial patterns is a major mathematical activity; geometric ideas and geometric language permeate all of mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信