{"title":"(Mg,Fe)O固溶体的组成和晶格热导率的压力依赖性","authors":"Akira Hasegawa , Kenji Ohta , Takashi Yagi , Kei Hirose , Yoshiyuki Okuda , Tadashi Kondo","doi":"10.1016/j.crte.2018.10.005","DOIUrl":null,"url":null,"abstract":"<div><p>We measured the lattice thermal conductivities of Fe<sub>0.98</sub>O wüstite and iron-rich (Mg,Fe)O magnesiowüstite using the pulsed light heating thermoreflectance technique with a diamond anvil cell up to 61<!--> <!-->GPa at 300<!--> <!-->K. We found that the thermal conductivity of wüstite does not show a monotonic increase as a function of pressure, contrary to that of MgO periclase. Rocksalt (B1) to rhombohedral B1 transition is likely to induce an abnormal pressure response in the conductivity of wüstite. Our results also show that magnesiowüstite has a lower conductivity than that of MgO and FeO endmembers due to a strong iron impurity effect, which is well reproduced by a model considering phonon-impurity scattering in a binary solid solution.</p></div>","PeriodicalId":50651,"journal":{"name":"Comptes Rendus Geoscience","volume":"351 2","pages":"Pages 229-235"},"PeriodicalIF":2.0000,"publicationDate":"2019-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.crte.2018.10.005","citationCount":"4","resultStr":"{\"title\":\"Composition and pressure dependence of lattice thermal conductivity of (Mg,Fe)O solid solutions\",\"authors\":\"Akira Hasegawa , Kenji Ohta , Takashi Yagi , Kei Hirose , Yoshiyuki Okuda , Tadashi Kondo\",\"doi\":\"10.1016/j.crte.2018.10.005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We measured the lattice thermal conductivities of Fe<sub>0.98</sub>O wüstite and iron-rich (Mg,Fe)O magnesiowüstite using the pulsed light heating thermoreflectance technique with a diamond anvil cell up to 61<!--> <!-->GPa at 300<!--> <!-->K. We found that the thermal conductivity of wüstite does not show a monotonic increase as a function of pressure, contrary to that of MgO periclase. Rocksalt (B1) to rhombohedral B1 transition is likely to induce an abnormal pressure response in the conductivity of wüstite. Our results also show that magnesiowüstite has a lower conductivity than that of MgO and FeO endmembers due to a strong iron impurity effect, which is well reproduced by a model considering phonon-impurity scattering in a binary solid solution.</p></div>\",\"PeriodicalId\":50651,\"journal\":{\"name\":\"Comptes Rendus Geoscience\",\"volume\":\"351 2\",\"pages\":\"Pages 229-235\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2019-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.crte.2018.10.005\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Comptes Rendus Geoscience\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1631071318301755\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comptes Rendus Geoscience","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1631071318301755","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
Composition and pressure dependence of lattice thermal conductivity of (Mg,Fe)O solid solutions
We measured the lattice thermal conductivities of Fe0.98O wüstite and iron-rich (Mg,Fe)O magnesiowüstite using the pulsed light heating thermoreflectance technique with a diamond anvil cell up to 61 GPa at 300 K. We found that the thermal conductivity of wüstite does not show a monotonic increase as a function of pressure, contrary to that of MgO periclase. Rocksalt (B1) to rhombohedral B1 transition is likely to induce an abnormal pressure response in the conductivity of wüstite. Our results also show that magnesiowüstite has a lower conductivity than that of MgO and FeO endmembers due to a strong iron impurity effect, which is well reproduced by a model considering phonon-impurity scattering in a binary solid solution.
期刊介绍:
Created in 1835 by physicist François Arago, then Permanent Secretary, the journal Comptes Rendus de l''Académie des sciences allows researchers to quickly make their work known to the international scientific community.
It is divided into seven titles covering the range of scientific research fields: Mathematics, Mechanics, Chemistry, Biology, Geoscience, Physics and Palevol. Each series is led by an editor-in-chief assisted by an editorial committee. Submitted articles are reviewed by two scientists with recognized competence in the field concerned. They can be notes, announcing significant new results, as well as review articles, allowing for a fine-tuning, or even proceedings of symposia and other thematic issues, under the direction of invited editors, French or foreign.