基于邻域加权K-最近邻法的发热分类

Surayya Safira Milania, Cucu Suhery, Tedy Rismawan
{"title":"基于邻域加权K-最近邻法的发热分类","authors":"Surayya Safira Milania, Cucu Suhery, Tedy Rismawan","doi":"10.24114/cess.v8i2.43267","DOIUrl":null,"url":null,"abstract":"Demam merupakan gejala atau reaksi tubuh terhadap suatu infeksi atau penyakit. Demam dapat disebabkan karena adanya infeksi virus, bakteri, dan parasit. Serta demam akibat gigitan nyamuk. Beberapa penyakit penyebab demam yang perlu diwaspadai antara lain Demam Berdarah Dengue (DBD), Demam Tifoid, dan Malaria dikarenakan gejala klinis dari ketiga penyakit tersebut sangat mirip dan sulit untuk dibedakan. Akibat dari gejala yang mirip, seringkali menyebabkan kesulitan dalam mendapatkan diagnosis awal sehingga kurang tepat dalam penanganan. Oleh karena itu, pada penelitian ini dibangun sebuah sistem yang dapat mengklasifikasikan demam menggunakan metode Neighbor Weighted K-Nearest Neighbor. Data yang digunakan berjumlah 300 data dengan komposisi rasio data latih dan data uji sebesar 70%:30% sehingga data latih yang digunakan berjumlah 210 data dan data uji berjumlah 90 data. Penelitian ini dilakukan dengan mengamati variasi nilai ketetanggaan (K) dan nilai exp (E) terhadap akurasi sistem klasifikasi demam. Hasil pelatihan menunjukkan bahwa nilai K dan E yang bervariasi tidak mempunyai pengaruh terhadap akurasi tersebut. Hasil pengujian yang dilakukan mendapatkan akurasi sebesar 100% pada setiap variasi nilai K dan E.Fever is a symptom of the body's reaction to an infection or disease. Fever can be caused by viral, bacterial, or parasitic infections. as well as fever due to mosquito bites. Several diseases that cause fever that need to be watched out for include dengue hemorrhagic fever (DHF), typhoid fever, and malaria because the clinical symptoms of these three diseases are very similar and difficult to distinguish. As a result of similar symptoms, it often causes difficulties in getting an early diagnosis, so treatment is not appropriate. Therefore, in this study, a system was developed that could classify fever using the neighbor weighted K-nearest neighbor method. The data used totaled 300, with a composition ratio of 70% training data to 30% test data, for a total of 210 training data and 90 test data. This research was conducted by observing the variation in the value of neighborliness (K) and the value of exp (E) on the accuracy of the fever classification system. The results of the training show that the varying K and E values have no effect on accuracy. The results of the tests carried out obtained an accuracy of 100% for each variation in the values of K and E. ","PeriodicalId":53361,"journal":{"name":"CESS Journal of Computer Engineering System and Science","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fever Classification Using the Neighbor Weighted K-Nearest Neighbor Method\",\"authors\":\"Surayya Safira Milania, Cucu Suhery, Tedy Rismawan\",\"doi\":\"10.24114/cess.v8i2.43267\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Demam merupakan gejala atau reaksi tubuh terhadap suatu infeksi atau penyakit. Demam dapat disebabkan karena adanya infeksi virus, bakteri, dan parasit. Serta demam akibat gigitan nyamuk. Beberapa penyakit penyebab demam yang perlu diwaspadai antara lain Demam Berdarah Dengue (DBD), Demam Tifoid, dan Malaria dikarenakan gejala klinis dari ketiga penyakit tersebut sangat mirip dan sulit untuk dibedakan. Akibat dari gejala yang mirip, seringkali menyebabkan kesulitan dalam mendapatkan diagnosis awal sehingga kurang tepat dalam penanganan. Oleh karena itu, pada penelitian ini dibangun sebuah sistem yang dapat mengklasifikasikan demam menggunakan metode Neighbor Weighted K-Nearest Neighbor. Data yang digunakan berjumlah 300 data dengan komposisi rasio data latih dan data uji sebesar 70%:30% sehingga data latih yang digunakan berjumlah 210 data dan data uji berjumlah 90 data. Penelitian ini dilakukan dengan mengamati variasi nilai ketetanggaan (K) dan nilai exp (E) terhadap akurasi sistem klasifikasi demam. Hasil pelatihan menunjukkan bahwa nilai K dan E yang bervariasi tidak mempunyai pengaruh terhadap akurasi tersebut. Hasil pengujian yang dilakukan mendapatkan akurasi sebesar 100% pada setiap variasi nilai K dan E.Fever is a symptom of the body's reaction to an infection or disease. Fever can be caused by viral, bacterial, or parasitic infections. as well as fever due to mosquito bites. Several diseases that cause fever that need to be watched out for include dengue hemorrhagic fever (DHF), typhoid fever, and malaria because the clinical symptoms of these three diseases are very similar and difficult to distinguish. As a result of similar symptoms, it often causes difficulties in getting an early diagnosis, so treatment is not appropriate. Therefore, in this study, a system was developed that could classify fever using the neighbor weighted K-nearest neighbor method. The data used totaled 300, with a composition ratio of 70% training data to 30% test data, for a total of 210 training data and 90 test data. This research was conducted by observing the variation in the value of neighborliness (K) and the value of exp (E) on the accuracy of the fever classification system. The results of the training show that the varying K and E values have no effect on accuracy. The results of the tests carried out obtained an accuracy of 100% for each variation in the values of K and E. \",\"PeriodicalId\":53361,\"journal\":{\"name\":\"CESS Journal of Computer Engineering System and Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"CESS Journal of Computer Engineering System and Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24114/cess.v8i2.43267\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"CESS Journal of Computer Engineering System and Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24114/cess.v8i2.43267","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

发烧是身体对感染或疾病的症状或反应。发烧可能是由于病毒、细菌和寄生虫感染引起的。还有蚊子发烧。登革热(DBD)、伤寒和疟疾是这三种疾病的临床症状,很难区分。类似症状的结果,通常会导致早期诊断不佳,治疗不佳。因此,在这项研究中,可以使用环保的K-Nearest方法对发烧进行分类。所使用的数据包含了300个数据,其运行数据与测试数据比例为70%:30%,因此所使用的培训数据占210个,测试数据占90个。这项研究是通过观察发热分类系统准确性的不规则值(K)和exp (E)值的变化来完成的。训练结果表明,不同的K和E值对准确性没有影响。所做的测试结果为身体对感染或疾病的反应增加了100%的准确性。发烧可以通过病毒、细菌或寄生虫感染。就像蚊子咬人一样。由于这三种疾病的临床症状非常相似,很难理解,因此需要密切关注出血、伤寒和疟疾。作为类似症状的参考,很难及早诊断,所以治疗不是不赞成的。在这项研究中,有一个系统正在开发,它可以通过邻居最受限制的K-nearest方法组织组织起来。数据总使用量为300,相当于70%的数据培训对30%的数据测试,总共210种数据培训和90种数据测试。这项研究是基于对热古典主义系统准确计算的变量的估计。非法K和E评估的训练结果没有准确定位。结果显示了K和E值的百分之百的准确。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fever Classification Using the Neighbor Weighted K-Nearest Neighbor Method
Demam merupakan gejala atau reaksi tubuh terhadap suatu infeksi atau penyakit. Demam dapat disebabkan karena adanya infeksi virus, bakteri, dan parasit. Serta demam akibat gigitan nyamuk. Beberapa penyakit penyebab demam yang perlu diwaspadai antara lain Demam Berdarah Dengue (DBD), Demam Tifoid, dan Malaria dikarenakan gejala klinis dari ketiga penyakit tersebut sangat mirip dan sulit untuk dibedakan. Akibat dari gejala yang mirip, seringkali menyebabkan kesulitan dalam mendapatkan diagnosis awal sehingga kurang tepat dalam penanganan. Oleh karena itu, pada penelitian ini dibangun sebuah sistem yang dapat mengklasifikasikan demam menggunakan metode Neighbor Weighted K-Nearest Neighbor. Data yang digunakan berjumlah 300 data dengan komposisi rasio data latih dan data uji sebesar 70%:30% sehingga data latih yang digunakan berjumlah 210 data dan data uji berjumlah 90 data. Penelitian ini dilakukan dengan mengamati variasi nilai ketetanggaan (K) dan nilai exp (E) terhadap akurasi sistem klasifikasi demam. Hasil pelatihan menunjukkan bahwa nilai K dan E yang bervariasi tidak mempunyai pengaruh terhadap akurasi tersebut. Hasil pengujian yang dilakukan mendapatkan akurasi sebesar 100% pada setiap variasi nilai K dan E.Fever is a symptom of the body's reaction to an infection or disease. Fever can be caused by viral, bacterial, or parasitic infections. as well as fever due to mosquito bites. Several diseases that cause fever that need to be watched out for include dengue hemorrhagic fever (DHF), typhoid fever, and malaria because the clinical symptoms of these three diseases are very similar and difficult to distinguish. As a result of similar symptoms, it often causes difficulties in getting an early diagnosis, so treatment is not appropriate. Therefore, in this study, a system was developed that could classify fever using the neighbor weighted K-nearest neighbor method. The data used totaled 300, with a composition ratio of 70% training data to 30% test data, for a total of 210 training data and 90 test data. This research was conducted by observing the variation in the value of neighborliness (K) and the value of exp (E) on the accuracy of the fever classification system. The results of the training show that the varying K and E values have no effect on accuracy. The results of the tests carried out obtained an accuracy of 100% for each variation in the values of K and E. 
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
40
审稿时长
4 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信