有理曲面的阿贝尔分支覆盖

IF 0.5 4区 数学 Q3 MATHEMATICS
R. Harris, Amey Joshi, B. Doug Park, Mainak Poddar
{"title":"有理曲面的阿贝尔分支覆盖","authors":"R. Harris, Amey Joshi, B. Doug Park, Mainak Poddar","doi":"10.1515/advgeom-2023-0012","DOIUrl":null,"url":null,"abstract":"Abstract We study abelian covers of rational surfaces branched over line arrangements. We use these covers to address the geography problem for closed simply connected nonspin irreducible symplectic 4-manifolds with positive signature.","PeriodicalId":7335,"journal":{"name":"Advances in Geometry","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2023-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Abelian branched covers of rational surfaces\",\"authors\":\"R. Harris, Amey Joshi, B. Doug Park, Mainak Poddar\",\"doi\":\"10.1515/advgeom-2023-0012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We study abelian covers of rational surfaces branched over line arrangements. We use these covers to address the geography problem for closed simply connected nonspin irreducible symplectic 4-manifolds with positive signature.\",\"PeriodicalId\":7335,\"journal\":{\"name\":\"Advances in Geometry\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/advgeom-2023-0012\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/advgeom-2023-0012","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

摘要我们研究了有理曲面在线性排列上分支的阿贝尔覆盖。我们使用这些覆盖来解决具有正签名的闭单连通非不可约辛4-流形的地理问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Abelian branched covers of rational surfaces
Abstract We study abelian covers of rational surfaces branched over line arrangements. We use these covers to address the geography problem for closed simply connected nonspin irreducible symplectic 4-manifolds with positive signature.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Geometry
Advances in Geometry 数学-数学
CiteScore
1.00
自引率
0.00%
发文量
31
审稿时长
>12 weeks
期刊介绍: Advances in Geometry is a mathematical journal for the publication of original research articles of excellent quality in the area of geometry. Geometry is a field of long standing-tradition and eminent importance. The study of space and spatial patterns is a major mathematical activity; geometric ideas and geometric language permeate all of mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信