边界层吸入推进概念的进展与展望

IF 11.5 1区 工程技术 Q1 ENGINEERING, AEROSPACE
Nicolas G.M. Moirou , Drewan S. Sanders , Panagiotis Laskaridis
{"title":"边界层吸入推进概念的进展与展望","authors":"Nicolas G.M. Moirou ,&nbsp;Drewan S. Sanders ,&nbsp;Panagiotis Laskaridis","doi":"10.1016/j.paerosci.2023.100897","DOIUrl":null,"url":null,"abstract":"<div><p>The aviation sector is experiencing an increasing pressure to reduce emissions via long-term strategies for a ceaselessly growing number of flight passengers. Aircraft currently in operation have typically been designed by considering the airframe somewhat separately from the propulsion system. In doing so, conventional aero-engine architectures are approaching their limits in terms of propulsive efficiency, with technological advancements yielding diminishing returns. A promising alternative architecture for improving the overall performance of the next generation of commercial aircraft relies upon boundary layer ingestion (BLI). This technology aerodynamically couples the airframe with a strategically positioned propulsion system to purposely ingest the airframe’s boundary layer flow. Nonetheless, there is a lack in consensus surrounding the interpretation and quantification of BLI benefits. This is primarily because conventional performance accounting methods breakdown in scenarios of strong aerodynamic coupling. Subsequently, there is a major challenge in defining appropriate performance metrics to provide a consistent measurement and comparison of the potential benefits. This review examines the various accounting methods and metrics that have been applied in evaluating BLI performance. These are discussed and critiqued in the context of both numerical and experimental models. Numerically, the geometric, aerodynamic and propulsive models are sorted by their orders of fidelity along with the plenitude of methods used for flow feature identification enabling a phenomenological understanding of BLI. Particular attention is then given to experimental BLI models with their different set-ups, methods and associated limitations and uncertainties. Finally, the numerous unconventional BLI aircraft concepts are categorised, compared and critiqued with reference to their associated design exploration and optimisation studies.</p></div>","PeriodicalId":54553,"journal":{"name":"Progress in Aerospace Sciences","volume":"138 ","pages":"Article 100897"},"PeriodicalIF":11.5000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Advancements and prospects of boundary layer ingestion propulsion concepts\",\"authors\":\"Nicolas G.M. Moirou ,&nbsp;Drewan S. Sanders ,&nbsp;Panagiotis Laskaridis\",\"doi\":\"10.1016/j.paerosci.2023.100897\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The aviation sector is experiencing an increasing pressure to reduce emissions via long-term strategies for a ceaselessly growing number of flight passengers. Aircraft currently in operation have typically been designed by considering the airframe somewhat separately from the propulsion system. In doing so, conventional aero-engine architectures are approaching their limits in terms of propulsive efficiency, with technological advancements yielding diminishing returns. A promising alternative architecture for improving the overall performance of the next generation of commercial aircraft relies upon boundary layer ingestion (BLI). This technology aerodynamically couples the airframe with a strategically positioned propulsion system to purposely ingest the airframe’s boundary layer flow. Nonetheless, there is a lack in consensus surrounding the interpretation and quantification of BLI benefits. This is primarily because conventional performance accounting methods breakdown in scenarios of strong aerodynamic coupling. Subsequently, there is a major challenge in defining appropriate performance metrics to provide a consistent measurement and comparison of the potential benefits. This review examines the various accounting methods and metrics that have been applied in evaluating BLI performance. These are discussed and critiqued in the context of both numerical and experimental models. Numerically, the geometric, aerodynamic and propulsive models are sorted by their orders of fidelity along with the plenitude of methods used for flow feature identification enabling a phenomenological understanding of BLI. Particular attention is then given to experimental BLI models with their different set-ups, methods and associated limitations and uncertainties. Finally, the numerous unconventional BLI aircraft concepts are categorised, compared and critiqued with reference to their associated design exploration and optimisation studies.</p></div>\",\"PeriodicalId\":54553,\"journal\":{\"name\":\"Progress in Aerospace Sciences\",\"volume\":\"138 \",\"pages\":\"Article 100897\"},\"PeriodicalIF\":11.5000,\"publicationDate\":\"2023-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Aerospace Sciences\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0376042123000131\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, AEROSPACE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Aerospace Sciences","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0376042123000131","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 2

摘要

航空业正面临着越来越大的压力,要求通过长期战略为不断增长的航班乘客减少排放。目前运行中的飞机通常是通过将机身与推进系统分开来设计的。在这样做的过程中,传统航空发动机结构在推进效率方面正接近极限,技术进步带来的回报越来越小。改善下一代商用飞机整体性能的一种有前景的替代架构依赖于边界层摄取(BLI)。这项技术将机身与战略定位的推进系统进行空气动力学耦合,以有意吸收机身的边界层流动。尽管如此,对BLI效益的解释和量化仍缺乏共识。这主要是因为传统的性能核算方法在强空气动力学耦合的情况下会崩溃。随后,在定义适当的性能指标以提供对潜在利益的一致测量和比较方面存在重大挑战。本综述审查了在评估BLI绩效时应用的各种会计方法和指标。这些都是在数值模型和实验模型的背景下讨论和批评的。从数字上讲,几何模型、空气动力学模型和推进模型按照其保真度顺序进行排序,以及用于流特征识别的大量方法,从而实现对BLI的现象学理解。然后特别注意实验性BLI模型及其不同的设置、方法和相关的限制和不确定性。最后,参考相关的设计探索和优化研究,对众多非常规BLI飞机概念进行了分类、比较和批评。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Advancements and prospects of boundary layer ingestion propulsion concepts

The aviation sector is experiencing an increasing pressure to reduce emissions via long-term strategies for a ceaselessly growing number of flight passengers. Aircraft currently in operation have typically been designed by considering the airframe somewhat separately from the propulsion system. In doing so, conventional aero-engine architectures are approaching their limits in terms of propulsive efficiency, with technological advancements yielding diminishing returns. A promising alternative architecture for improving the overall performance of the next generation of commercial aircraft relies upon boundary layer ingestion (BLI). This technology aerodynamically couples the airframe with a strategically positioned propulsion system to purposely ingest the airframe’s boundary layer flow. Nonetheless, there is a lack in consensus surrounding the interpretation and quantification of BLI benefits. This is primarily because conventional performance accounting methods breakdown in scenarios of strong aerodynamic coupling. Subsequently, there is a major challenge in defining appropriate performance metrics to provide a consistent measurement and comparison of the potential benefits. This review examines the various accounting methods and metrics that have been applied in evaluating BLI performance. These are discussed and critiqued in the context of both numerical and experimental models. Numerically, the geometric, aerodynamic and propulsive models are sorted by their orders of fidelity along with the plenitude of methods used for flow feature identification enabling a phenomenological understanding of BLI. Particular attention is then given to experimental BLI models with their different set-ups, methods and associated limitations and uncertainties. Finally, the numerous unconventional BLI aircraft concepts are categorised, compared and critiqued with reference to their associated design exploration and optimisation studies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Progress in Aerospace Sciences
Progress in Aerospace Sciences 工程技术-工程:宇航
CiteScore
20.20
自引率
3.10%
发文量
41
审稿时长
5 months
期刊介绍: "Progress in Aerospace Sciences" is a prestigious international review journal focusing on research in aerospace sciences and its applications in research organizations, industry, and universities. The journal aims to appeal to a wide range of readers and provide valuable information. The primary content of the journal consists of specially commissioned review articles. These articles serve to collate the latest advancements in the expansive field of aerospace sciences. Unlike other journals, there are no restrictions on the length of papers. Authors are encouraged to furnish specialist readers with a clear and concise summary of recent work, while also providing enough detail for general aerospace readers to stay updated on developments in fields beyond their own expertise.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信