不赋范Markushevich基的连续函数的Banach空间

IF 0.8 3区 数学 Q2 MATHEMATICS
Mathematika Pub Date : 2023-07-28 DOI:10.1112/mtk.12217
Tommaso Russo, Jacopo Somaglia
{"title":"不赋范Markushevich基的连续函数的Banach空间","authors":"Tommaso Russo,&nbsp;Jacopo Somaglia","doi":"10.1112/mtk.12217","DOIUrl":null,"url":null,"abstract":"<p>We investigate the question whether a scattered compact topological space <i>K</i> such that <math>\n <semantics>\n <mrow>\n <mi>C</mi>\n <mo>(</mo>\n <mi>K</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$C(K)$</annotation>\n </semantics></math> has a norming Markushevich basis (M-basis, for short) must be Eberlein. This question originates from the recent solution, due to Hájek, Todorčević and the authors, to an open problem from the 1990s, due to Godefroy. Our prime tool consists in proving that <math>\n <semantics>\n <mrow>\n <mi>C</mi>\n <mo>(</mo>\n <mrow>\n <mo>[</mo>\n <mn>0</mn>\n <mo>,</mo>\n <msub>\n <mi>ω</mi>\n <mn>1</mn>\n </msub>\n <mo>]</mo>\n </mrow>\n <mo>)</mo>\n </mrow>\n <annotation>$C([0,\\omega _1])$</annotation>\n </semantics></math> does not embed in a Banach space with a norming M-basis, thereby generalising a result due to Alexandrov and Plichko. Subsequently, we give sufficient conditions on a compact <i>K</i> for <math>\n <semantics>\n <mrow>\n <mi>C</mi>\n <mo>(</mo>\n <mi>K</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$C(K)$</annotation>\n </semantics></math> not to embed in a Banach space with a norming M-basis. Examples of such conditions are that <i>K</i> is a zero-dimensional compact space with a P-point, or a compact tree of height at least <math>\n <semantics>\n <mrow>\n <msub>\n <mi>ω</mi>\n <mn>1</mn>\n </msub>\n <mo>+</mo>\n <mn>1</mn>\n </mrow>\n <annotation>$\\omega _1 +1$</annotation>\n </semantics></math>. In particular, this allows us to answer the said question in the case when <i>K</i> is a tree and to obtain a rather general result for Valdivia compacta. Finally, we give some structural results for scattered compact trees; in particular, we prove that scattered trees of height less than ω<sub>2</sub> are Valdivia.</p>","PeriodicalId":18463,"journal":{"name":"Mathematika","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2023-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/mtk.12217","citationCount":"0","resultStr":"{\"title\":\"Banach spaces of continuous functions without norming Markushevich bases\",\"authors\":\"Tommaso Russo,&nbsp;Jacopo Somaglia\",\"doi\":\"10.1112/mtk.12217\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We investigate the question whether a scattered compact topological space <i>K</i> such that <math>\\n <semantics>\\n <mrow>\\n <mi>C</mi>\\n <mo>(</mo>\\n <mi>K</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$C(K)$</annotation>\\n </semantics></math> has a norming Markushevich basis (M-basis, for short) must be Eberlein. This question originates from the recent solution, due to Hájek, Todorčević and the authors, to an open problem from the 1990s, due to Godefroy. Our prime tool consists in proving that <math>\\n <semantics>\\n <mrow>\\n <mi>C</mi>\\n <mo>(</mo>\\n <mrow>\\n <mo>[</mo>\\n <mn>0</mn>\\n <mo>,</mo>\\n <msub>\\n <mi>ω</mi>\\n <mn>1</mn>\\n </msub>\\n <mo>]</mo>\\n </mrow>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$C([0,\\\\omega _1])$</annotation>\\n </semantics></math> does not embed in a Banach space with a norming M-basis, thereby generalising a result due to Alexandrov and Plichko. Subsequently, we give sufficient conditions on a compact <i>K</i> for <math>\\n <semantics>\\n <mrow>\\n <mi>C</mi>\\n <mo>(</mo>\\n <mi>K</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$C(K)$</annotation>\\n </semantics></math> not to embed in a Banach space with a norming M-basis. Examples of such conditions are that <i>K</i> is a zero-dimensional compact space with a P-point, or a compact tree of height at least <math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>ω</mi>\\n <mn>1</mn>\\n </msub>\\n <mo>+</mo>\\n <mn>1</mn>\\n </mrow>\\n <annotation>$\\\\omega _1 +1$</annotation>\\n </semantics></math>. In particular, this allows us to answer the said question in the case when <i>K</i> is a tree and to obtain a rather general result for Valdivia compacta. Finally, we give some structural results for scattered compact trees; in particular, we prove that scattered trees of height less than ω<sub>2</sub> are Valdivia.</p>\",\"PeriodicalId\":18463,\"journal\":{\"name\":\"Mathematika\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-07-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1112/mtk.12217\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematika\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1112/mtk.12217\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematika","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/mtk.12217","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了一个离散紧拓扑空间$K$使得$C(K)$具有一个规范的Markushevich基(简称m基)是否一定是Eberlein的问题。这个问题源于最近的解决方案,由于H\ ajek, Todor\v{c}evi\ c,以及作者,从90年代开始,由于Godefroy的一个开放问题。我们的主要工具在于证明$C([0,\omega_1])$不嵌入具有规范m基的Banach空间中,从而推广了Alexandrov和Plichko的结果。在此基础上,给出了紧$K$不嵌入规整m基的Banach空间的充分条件。这些条件的例子是:$K$是一个$0$维的紧化空间,有一个p点,或者一个高度至少为$\omega_1 +1$的紧化树。特别地,这允许我们在$K$是树的情况下回答上述问题,并获得关于Valdivia compacta的一般结果。最后给出了离散紧树的一些结构结果;特别地,我们证明了高度小于$\omega_2$的散树是Valdivia。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Banach spaces of continuous functions without norming Markushevich bases

We investigate the question whether a scattered compact topological space K such that C ( K ) $C(K)$ has a norming Markushevich basis (M-basis, for short) must be Eberlein. This question originates from the recent solution, due to Hájek, Todorčević and the authors, to an open problem from the 1990s, due to Godefroy. Our prime tool consists in proving that C ( [ 0 , ω 1 ] ) $C([0,\omega _1])$ does not embed in a Banach space with a norming M-basis, thereby generalising a result due to Alexandrov and Plichko. Subsequently, we give sufficient conditions on a compact K for C ( K ) $C(K)$ not to embed in a Banach space with a norming M-basis. Examples of such conditions are that K is a zero-dimensional compact space with a P-point, or a compact tree of height at least ω 1 + 1 $\omega _1 +1$ . In particular, this allows us to answer the said question in the case when K is a tree and to obtain a rather general result for Valdivia compacta. Finally, we give some structural results for scattered compact trees; in particular, we prove that scattered trees of height less than ω2 are Valdivia.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mathematika
Mathematika MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
1.40
自引率
0.00%
发文量
60
审稿时长
>12 weeks
期刊介绍: Mathematika publishes both pure and applied mathematical articles and has done so continuously since its founding by Harold Davenport in the 1950s. The traditional emphasis has been towards the purer side of mathematics but applied mathematics and articles addressing both aspects are equally welcome. The journal is published by the London Mathematical Society, on behalf of its owner University College London, and will continue to publish research papers of the highest mathematical quality.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信