用于高性能电化学超级电容器的三元结构镁钴氧化物/石墨烯/聚咔唑纳米杂化物

Q1 Materials Science
Akhil Babu , T.E. Somesh , C.D Ani Dechamma , A.B. Hemavathi , Raghava Reddy Kakarla , Raghavendra V. Kulkarni , Anjanapura V. Raghu
{"title":"用于高性能电化学超级电容器的三元结构镁钴氧化物/石墨烯/聚咔唑纳米杂化物","authors":"Akhil Babu ,&nbsp;T.E. Somesh ,&nbsp;C.D Ani Dechamma ,&nbsp;A.B. Hemavathi ,&nbsp;Raghava Reddy Kakarla ,&nbsp;Raghavendra V. Kulkarni ,&nbsp;Anjanapura V. Raghu","doi":"10.1016/j.mset.2023.04.002","DOIUrl":null,"url":null,"abstract":"<div><p>In the present work, polycarbazole (PCz)/magnesium cobalt oxide (MgCo<sub>2</sub>O<sub>4</sub>)/reduced graphene oxide (RGO) based ternary nanocomposite was prepared through in-situ polymerization, and utilized it as an active electrodes for electrochemical energy storage supercapacitor applications. The electrochemical behaviour of PCz and its nanocomposites were investigated by measuring specific capacitance using cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and Galvanostatic charge–discharge (GCD) analysis. The PCz/MgCo<sub>2</sub>O<sub>4</sub>/RGO hybrids exhibited higher capacitance (548.54 F/g) than that of PCz (117.65 F/g) and PCz/MgCo<sub>2</sub>O<sub>4</sub> (482.92 F/g) at the scan rate of 50 mV/s, as determined by CV method. The enhanced supercapacitance indicates high power and energy storage capabilities of the ternary metal oxide-graphene based polycarbazole nanocomposites. Electrochemical impedance spectroscopy confirmed low solution resistance of PCz/MgCo<sub>2</sub>O<sub>4</sub>/RGO. Thermogravimetric analysis affirmed the increased thermal stability of PCz/MgCo<sub>2</sub>O<sub>4</sub>/RGO composite compared to that of pure polycarbazole and PCz/MgCo<sub>2</sub>O<sub>4</sub> nanocomposite. The scanning electron micrographs of nanocomposite confirmed the successful incorporation of nanofillers into the PCz matrix. On the basis of the research findings, PCz/MgCo<sub>2</sub>O<sub>4</sub>/RGO can be expected to be a promising electrode active material for high performance energy storage supercapacitors.</p></div>","PeriodicalId":18283,"journal":{"name":"Materials Science for Energy Technologies","volume":"6 ","pages":"Pages 399-408"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Ternary structured magnesium cobalt oxide/graphene/polycarbazole nanohybrids for high performance electrochemical supercapacitors\",\"authors\":\"Akhil Babu ,&nbsp;T.E. Somesh ,&nbsp;C.D Ani Dechamma ,&nbsp;A.B. Hemavathi ,&nbsp;Raghava Reddy Kakarla ,&nbsp;Raghavendra V. Kulkarni ,&nbsp;Anjanapura V. Raghu\",\"doi\":\"10.1016/j.mset.2023.04.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In the present work, polycarbazole (PCz)/magnesium cobalt oxide (MgCo<sub>2</sub>O<sub>4</sub>)/reduced graphene oxide (RGO) based ternary nanocomposite was prepared through in-situ polymerization, and utilized it as an active electrodes for electrochemical energy storage supercapacitor applications. The electrochemical behaviour of PCz and its nanocomposites were investigated by measuring specific capacitance using cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and Galvanostatic charge–discharge (GCD) analysis. The PCz/MgCo<sub>2</sub>O<sub>4</sub>/RGO hybrids exhibited higher capacitance (548.54 F/g) than that of PCz (117.65 F/g) and PCz/MgCo<sub>2</sub>O<sub>4</sub> (482.92 F/g) at the scan rate of 50 mV/s, as determined by CV method. The enhanced supercapacitance indicates high power and energy storage capabilities of the ternary metal oxide-graphene based polycarbazole nanocomposites. Electrochemical impedance spectroscopy confirmed low solution resistance of PCz/MgCo<sub>2</sub>O<sub>4</sub>/RGO. Thermogravimetric analysis affirmed the increased thermal stability of PCz/MgCo<sub>2</sub>O<sub>4</sub>/RGO composite compared to that of pure polycarbazole and PCz/MgCo<sub>2</sub>O<sub>4</sub> nanocomposite. The scanning electron micrographs of nanocomposite confirmed the successful incorporation of nanofillers into the PCz matrix. On the basis of the research findings, PCz/MgCo<sub>2</sub>O<sub>4</sub>/RGO can be expected to be a promising electrode active material for high performance energy storage supercapacitors.</p></div>\",\"PeriodicalId\":18283,\"journal\":{\"name\":\"Materials Science for Energy Technologies\",\"volume\":\"6 \",\"pages\":\"Pages 399-408\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Science for Energy Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2589299123000198\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Materials Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science for Energy Technologies","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589299123000198","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 16

摘要

本文采用原位聚合法制备了聚咔唑(PCz)/氧化钴镁(MgCo2O4)/还原氧化石墨烯(RGO)基三元纳米复合材料,并将其作为电化学储能超级电容器的活性电极。通过循环伏安法(CV)、电化学阻抗谱法(EIS)和恒流充放电(GCD)等方法测量比电容,研究了PCz及其纳米复合材料的电化学行为。在扫描速率为50 mV/s时,PCz/MgCo2O4/RGO复合材料的电容量(548.54 F/g)高于PCz (117.65 F/g)和PCz/MgCo2O4 (482.92 F/g)。超级电容的增强表明三元金属氧化物-石墨烯基聚咔唑纳米复合材料具有高功率和储能能力。电化学阻抗谱证实PCz/MgCo2O4/RGO具有较低的耐溶性。热重分析证实,与纯聚咔唑和PCz/MgCo2O4纳米复合材料相比,PCz/MgCo2O4/RGO复合材料的热稳定性有所提高。纳米复合材料的扫描电镜证实了纳米填料成功地掺入到PCz基体中。基于以上研究结果,PCz/MgCo2O4/RGO有望成为高性能储能超级电容器极活性材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Ternary structured magnesium cobalt oxide/graphene/polycarbazole nanohybrids for high performance electrochemical supercapacitors

Ternary structured magnesium cobalt oxide/graphene/polycarbazole nanohybrids for high performance electrochemical supercapacitors

In the present work, polycarbazole (PCz)/magnesium cobalt oxide (MgCo2O4)/reduced graphene oxide (RGO) based ternary nanocomposite was prepared through in-situ polymerization, and utilized it as an active electrodes for electrochemical energy storage supercapacitor applications. The electrochemical behaviour of PCz and its nanocomposites were investigated by measuring specific capacitance using cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and Galvanostatic charge–discharge (GCD) analysis. The PCz/MgCo2O4/RGO hybrids exhibited higher capacitance (548.54 F/g) than that of PCz (117.65 F/g) and PCz/MgCo2O4 (482.92 F/g) at the scan rate of 50 mV/s, as determined by CV method. The enhanced supercapacitance indicates high power and energy storage capabilities of the ternary metal oxide-graphene based polycarbazole nanocomposites. Electrochemical impedance spectroscopy confirmed low solution resistance of PCz/MgCo2O4/RGO. Thermogravimetric analysis affirmed the increased thermal stability of PCz/MgCo2O4/RGO composite compared to that of pure polycarbazole and PCz/MgCo2O4 nanocomposite. The scanning electron micrographs of nanocomposite confirmed the successful incorporation of nanofillers into the PCz matrix. On the basis of the research findings, PCz/MgCo2O4/RGO can be expected to be a promising electrode active material for high performance energy storage supercapacitors.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials Science for Energy Technologies
Materials Science for Energy Technologies Materials Science-Materials Science (miscellaneous)
CiteScore
16.50
自引率
0.00%
发文量
41
审稿时长
39 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信