O. Lindberg , D. Lingfors , J. Arnqvist , D. van der Meer , J. Munkhammar
{"title":"瑞典风能和太阳能发电园区的未来一天概率预测:交易和预测验证","authors":"O. Lindberg , D. Lingfors , J. Arnqvist , D. van der Meer , J. Munkhammar","doi":"10.1016/j.adapen.2022.100120","DOIUrl":null,"url":null,"abstract":"<div><p>This paper presents a first step in the field of probabilistic forecasting of co-located wind and photovoltaic (PV) parks. The effect of aggregation is analyzed with respect to forecast accuracy and value at a co-located park in Sweden using roughly three years of data. We use a fixed modelling framework where we post-process numerical weather predictions to calibrated probabilistic production forecasts, which is a prerequisite when placing optimal bids in the day-ahead market. The results show that aggregation improves forecast accuracy in terms of continuous ranked probability score, interval score and quantile score when compared to wind or PV power forecasts alone. The optimal aggregation ratio is found to be 50%–60% wind power and the remainder PV power. This is explained by the aggregated time series being smoother, which improves the calibration and produces sharper predictive distributions, especially during periods of high variability in both resources, i.e., most prominently in the summer, spring and fall. Furthermore, the daily variability of wind and PV power generation was found to be anti-correlated which proved to be beneficial when forecasting the aggregated time series. Finally, we show that probabilistic forecasts of co-located production improve trading in the day-ahead market, where the more accurate and sharper forecasts reduce balancing costs. In conclusion, the study indicates that co-locating wind and PV power parks can improve probabilistic forecasts which, furthermore, carry over to electricity market trading. The results from the study should be generally applicable to other co-located parks in similar climates.</p></div>","PeriodicalId":34615,"journal":{"name":"Advances in Applied Energy","volume":"9 ","pages":"Article 100120"},"PeriodicalIF":13.0000,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Day-ahead probabilistic forecasting at a co-located wind and solar power park in Sweden: Trading and forecast verification\",\"authors\":\"O. Lindberg , D. Lingfors , J. Arnqvist , D. van der Meer , J. Munkhammar\",\"doi\":\"10.1016/j.adapen.2022.100120\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper presents a first step in the field of probabilistic forecasting of co-located wind and photovoltaic (PV) parks. The effect of aggregation is analyzed with respect to forecast accuracy and value at a co-located park in Sweden using roughly three years of data. We use a fixed modelling framework where we post-process numerical weather predictions to calibrated probabilistic production forecasts, which is a prerequisite when placing optimal bids in the day-ahead market. The results show that aggregation improves forecast accuracy in terms of continuous ranked probability score, interval score and quantile score when compared to wind or PV power forecasts alone. The optimal aggregation ratio is found to be 50%–60% wind power and the remainder PV power. This is explained by the aggregated time series being smoother, which improves the calibration and produces sharper predictive distributions, especially during periods of high variability in both resources, i.e., most prominently in the summer, spring and fall. Furthermore, the daily variability of wind and PV power generation was found to be anti-correlated which proved to be beneficial when forecasting the aggregated time series. Finally, we show that probabilistic forecasts of co-located production improve trading in the day-ahead market, where the more accurate and sharper forecasts reduce balancing costs. In conclusion, the study indicates that co-locating wind and PV power parks can improve probabilistic forecasts which, furthermore, carry over to electricity market trading. The results from the study should be generally applicable to other co-located parks in similar climates.</p></div>\",\"PeriodicalId\":34615,\"journal\":{\"name\":\"Advances in Applied Energy\",\"volume\":\"9 \",\"pages\":\"Article 100120\"},\"PeriodicalIF\":13.0000,\"publicationDate\":\"2023-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Applied Energy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666792422000385\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Applied Energy","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666792422000385","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Day-ahead probabilistic forecasting at a co-located wind and solar power park in Sweden: Trading and forecast verification
This paper presents a first step in the field of probabilistic forecasting of co-located wind and photovoltaic (PV) parks. The effect of aggregation is analyzed with respect to forecast accuracy and value at a co-located park in Sweden using roughly three years of data. We use a fixed modelling framework where we post-process numerical weather predictions to calibrated probabilistic production forecasts, which is a prerequisite when placing optimal bids in the day-ahead market. The results show that aggregation improves forecast accuracy in terms of continuous ranked probability score, interval score and quantile score when compared to wind or PV power forecasts alone. The optimal aggregation ratio is found to be 50%–60% wind power and the remainder PV power. This is explained by the aggregated time series being smoother, which improves the calibration and produces sharper predictive distributions, especially during periods of high variability in both resources, i.e., most prominently in the summer, spring and fall. Furthermore, the daily variability of wind and PV power generation was found to be anti-correlated which proved to be beneficial when forecasting the aggregated time series. Finally, we show that probabilistic forecasts of co-located production improve trading in the day-ahead market, where the more accurate and sharper forecasts reduce balancing costs. In conclusion, the study indicates that co-locating wind and PV power parks can improve probabilistic forecasts which, furthermore, carry over to electricity market trading. The results from the study should be generally applicable to other co-located parks in similar climates.