Ashleen R. Knutsen, J. Fleming, E. Ebramzadeh, Nathan C. Ho, Tibor Warganich, Thomas G. W. Harris, S. Sangiorgio
{"title":"第一跖跖关节融合术固定装置的生物力学比较","authors":"Ashleen R. Knutsen, J. Fleming, E. Ebramzadeh, Nathan C. Ho, Tibor Warganich, Thomas G. W. Harris, S. Sangiorgio","doi":"10.1177/1938640016679698","DOIUrl":null,"url":null,"abstract":"Common surgical treatment of first tarsal-metatarsal arthritis is by first metatarsocuneiform joint arthrodesis. While crossed-screw and locking plate fixation are the most widely used methods, a novel construct was designed to alleviate soft tissue irritation while still providing stable fixation. Using anatomic first metatarsal and medial cuneiform composites, we compared 3 arthrodesis implants (crossed-screw, dorsal locking plate, and IO Fix) under 2 cyclic bending loading scenarios (cantilever and 4-point bending). Additionally, the optimal orientation (plantar-dorsal or dorsal-plantar) of the IO Fix construct was determined. Failure load, diastasis, joint space angle, and axial and angular stiffness were determined. Both crossed-screw fixation and the IO Fix constructs experienced significantly higher failure loads than the dorsal locking plate during both loading scenarios. Additionally, they had lower plantar diastasis and joint space angle at failure than the plate. Moreover, the plantar-dorsal IO Fix construct was significantly stiffer than the crossed-screw during cantilever bending. Finally, the plantar-dorsal orientation of the IO Fix device had higher failure load and lower diastasis and angle at failure than in the dorsal-plantar orientation. The results suggest that the IO Fix system can reduce motion at the interfragmentary site and ensure compression for healing comparable to that of the crossed-screw fixation. Levels of Evidence: Level V: Bench testing","PeriodicalId":39271,"journal":{"name":"Foot and Ankle Specialist","volume":"10 1","pages":"322 - 328"},"PeriodicalIF":1.8000,"publicationDate":"2017-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/1938640016679698","citationCount":"6","resultStr":"{\"title\":\"Biomechanical Comparison of Fixation Devices for First Metatarsocuneiform Joint Arthrodesis\",\"authors\":\"Ashleen R. Knutsen, J. Fleming, E. Ebramzadeh, Nathan C. Ho, Tibor Warganich, Thomas G. W. Harris, S. Sangiorgio\",\"doi\":\"10.1177/1938640016679698\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Common surgical treatment of first tarsal-metatarsal arthritis is by first metatarsocuneiform joint arthrodesis. While crossed-screw and locking plate fixation are the most widely used methods, a novel construct was designed to alleviate soft tissue irritation while still providing stable fixation. Using anatomic first metatarsal and medial cuneiform composites, we compared 3 arthrodesis implants (crossed-screw, dorsal locking plate, and IO Fix) under 2 cyclic bending loading scenarios (cantilever and 4-point bending). Additionally, the optimal orientation (plantar-dorsal or dorsal-plantar) of the IO Fix construct was determined. Failure load, diastasis, joint space angle, and axial and angular stiffness were determined. Both crossed-screw fixation and the IO Fix constructs experienced significantly higher failure loads than the dorsal locking plate during both loading scenarios. Additionally, they had lower plantar diastasis and joint space angle at failure than the plate. Moreover, the plantar-dorsal IO Fix construct was significantly stiffer than the crossed-screw during cantilever bending. Finally, the plantar-dorsal orientation of the IO Fix device had higher failure load and lower diastasis and angle at failure than in the dorsal-plantar orientation. The results suggest that the IO Fix system can reduce motion at the interfragmentary site and ensure compression for healing comparable to that of the crossed-screw fixation. Levels of Evidence: Level V: Bench testing\",\"PeriodicalId\":39271,\"journal\":{\"name\":\"Foot and Ankle Specialist\",\"volume\":\"10 1\",\"pages\":\"322 - 328\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2017-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1177/1938640016679698\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Foot and Ankle Specialist\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/1938640016679698\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ORTHOPEDICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Foot and Ankle Specialist","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/1938640016679698","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ORTHOPEDICS","Score":null,"Total":0}
Biomechanical Comparison of Fixation Devices for First Metatarsocuneiform Joint Arthrodesis
Common surgical treatment of first tarsal-metatarsal arthritis is by first metatarsocuneiform joint arthrodesis. While crossed-screw and locking plate fixation are the most widely used methods, a novel construct was designed to alleviate soft tissue irritation while still providing stable fixation. Using anatomic first metatarsal and medial cuneiform composites, we compared 3 arthrodesis implants (crossed-screw, dorsal locking plate, and IO Fix) under 2 cyclic bending loading scenarios (cantilever and 4-point bending). Additionally, the optimal orientation (plantar-dorsal or dorsal-plantar) of the IO Fix construct was determined. Failure load, diastasis, joint space angle, and axial and angular stiffness were determined. Both crossed-screw fixation and the IO Fix constructs experienced significantly higher failure loads than the dorsal locking plate during both loading scenarios. Additionally, they had lower plantar diastasis and joint space angle at failure than the plate. Moreover, the plantar-dorsal IO Fix construct was significantly stiffer than the crossed-screw during cantilever bending. Finally, the plantar-dorsal orientation of the IO Fix device had higher failure load and lower diastasis and angle at failure than in the dorsal-plantar orientation. The results suggest that the IO Fix system can reduce motion at the interfragmentary site and ensure compression for healing comparable to that of the crossed-screw fixation. Levels of Evidence: Level V: Bench testing