{"title":"MHD反应性挤压流体通道热稳定性的谱配点法研究","authors":"E. Titiloye, A. Adeosun, J. Ukaegbu","doi":"10.1515/ijnsns-2021-0111","DOIUrl":null,"url":null,"abstract":"Abstract The current study focuses on the thermal stability of exothermic MHD reactive squeezed fluid flow between parallel plates. The problem’s governing nonlinear partial differential equations are transformed into dimensionless ones. The dimensionless equations obtained are highly nonlinear and are then numerically solved using the spectral collocation method (SCM). The acquired results are verified using Runge–Kutta fourth-fifth order (RK45) combined with shooting method, and a good agreement is achieved. Some graphs and tables are provided to examine the exothermic combustion process by focusing on the effects of emergent kinetic parameters such as activation energy, heat generation, and squeezed flow on the temperature profile and thermal stability of the system. It is discovered that the activation energy parameter tends to minimize the temperature profile while also improving the system’s thermal stability. However, the squeezed parameter and the heat generation rate parameter increase exothermic chemical reactions, causing the system to become unstable.","PeriodicalId":50304,"journal":{"name":"International Journal of Nonlinear Sciences and Numerical Simulation","volume":"24 1","pages":"1553 - 1563"},"PeriodicalIF":1.4000,"publicationDate":"2022-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spectral collocation method approach to thermal stability of MHD reactive squeezed fluid flow through a channel\",\"authors\":\"E. Titiloye, A. Adeosun, J. Ukaegbu\",\"doi\":\"10.1515/ijnsns-2021-0111\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The current study focuses on the thermal stability of exothermic MHD reactive squeezed fluid flow between parallel plates. The problem’s governing nonlinear partial differential equations are transformed into dimensionless ones. The dimensionless equations obtained are highly nonlinear and are then numerically solved using the spectral collocation method (SCM). The acquired results are verified using Runge–Kutta fourth-fifth order (RK45) combined with shooting method, and a good agreement is achieved. Some graphs and tables are provided to examine the exothermic combustion process by focusing on the effects of emergent kinetic parameters such as activation energy, heat generation, and squeezed flow on the temperature profile and thermal stability of the system. It is discovered that the activation energy parameter tends to minimize the temperature profile while also improving the system’s thermal stability. However, the squeezed parameter and the heat generation rate parameter increase exothermic chemical reactions, causing the system to become unstable.\",\"PeriodicalId\":50304,\"journal\":{\"name\":\"International Journal of Nonlinear Sciences and Numerical Simulation\",\"volume\":\"24 1\",\"pages\":\"1553 - 1563\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2022-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Nonlinear Sciences and Numerical Simulation\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1515/ijnsns-2021-0111\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Nonlinear Sciences and Numerical Simulation","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1515/ijnsns-2021-0111","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
Spectral collocation method approach to thermal stability of MHD reactive squeezed fluid flow through a channel
Abstract The current study focuses on the thermal stability of exothermic MHD reactive squeezed fluid flow between parallel plates. The problem’s governing nonlinear partial differential equations are transformed into dimensionless ones. The dimensionless equations obtained are highly nonlinear and are then numerically solved using the spectral collocation method (SCM). The acquired results are verified using Runge–Kutta fourth-fifth order (RK45) combined with shooting method, and a good agreement is achieved. Some graphs and tables are provided to examine the exothermic combustion process by focusing on the effects of emergent kinetic parameters such as activation energy, heat generation, and squeezed flow on the temperature profile and thermal stability of the system. It is discovered that the activation energy parameter tends to minimize the temperature profile while also improving the system’s thermal stability. However, the squeezed parameter and the heat generation rate parameter increase exothermic chemical reactions, causing the system to become unstable.
期刊介绍:
The International Journal of Nonlinear Sciences and Numerical Simulation publishes original papers on all subjects relevant to nonlinear sciences and numerical simulation. The journal is directed at Researchers in Nonlinear Sciences, Engineers, and Computational Scientists, Economists, and others, who either study the nature of nonlinear problems or conduct numerical simulations of nonlinear problems.