水溶液中汞(II)在黑曲霉生物量上的吸附

Q4 Biochemistry, Genetics and Molecular Biology
I. A. Rodríguez, Nancy Cecilia Pacheco-Castillo, J. Cárdenas-González, M. Zárate, V. Martínez-Juárez, A. Rodríguez-Pérez
{"title":"水溶液中汞(II)在黑曲霉生物量上的吸附","authors":"I. A. Rodríguez, Nancy Cecilia Pacheco-Castillo, J. Cárdenas-González, M. Zárate, V. Martínez-Juárez, A. Rodríguez-Pérez","doi":"10.29267/MXJB.2018.3.3.15","DOIUrl":null,"url":null,"abstract":"Mercury (II) removal capacity in aqueous solution by Aspergillus niger biomass was analyzed by the atomic absorption spectrometry method. The fungus grew in 2000 ppm of the metal (20.3%). Biosorption was evaluated at different pH (3.5, 4.5, and 5.5) at different times. In addition, the effect of temperature in the range of 28°C to 45oC and removal at different initial concentrations of Hg (II) from 100 to 500 mg/L were also studied. The highest biosorption (83.2% with 100 mg/L of the metal, and 1 g of biomass) was 24 h at pH of 5.5 and 28oC. With regard to temperature, the highest removal was to 28oC, with an 83.2% removal at 24 h, and at higher biomass concentrations, the removal was most efficient (100% in 12 h with 5 g of biomass). Fungal biomass showed good removal capacity of the metal in situ, 69% removal in contaminated water, after 7 days of incubation and 5 g of biomass (100 mL water), so it can be used to remove industrial wastewater.","PeriodicalId":36479,"journal":{"name":"Mexican Journal of Biotechnology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Biosorption of mercury (II) from aqueous solution onto biomass of Aspergillus niger\",\"authors\":\"I. A. Rodríguez, Nancy Cecilia Pacheco-Castillo, J. Cárdenas-González, M. Zárate, V. Martínez-Juárez, A. Rodríguez-Pérez\",\"doi\":\"10.29267/MXJB.2018.3.3.15\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Mercury (II) removal capacity in aqueous solution by Aspergillus niger biomass was analyzed by the atomic absorption spectrometry method. The fungus grew in 2000 ppm of the metal (20.3%). Biosorption was evaluated at different pH (3.5, 4.5, and 5.5) at different times. In addition, the effect of temperature in the range of 28°C to 45oC and removal at different initial concentrations of Hg (II) from 100 to 500 mg/L were also studied. The highest biosorption (83.2% with 100 mg/L of the metal, and 1 g of biomass) was 24 h at pH of 5.5 and 28oC. With regard to temperature, the highest removal was to 28oC, with an 83.2% removal at 24 h, and at higher biomass concentrations, the removal was most efficient (100% in 12 h with 5 g of biomass). Fungal biomass showed good removal capacity of the metal in situ, 69% removal in contaminated water, after 7 days of incubation and 5 g of biomass (100 mL water), so it can be used to remove industrial wastewater.\",\"PeriodicalId\":36479,\"journal\":{\"name\":\"Mexican Journal of Biotechnology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mexican Journal of Biotechnology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.29267/MXJB.2018.3.3.15\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mexican Journal of Biotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29267/MXJB.2018.3.3.15","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0

摘要

采用原子吸收光谱法分析了黑曲霉生物质对水溶液中汞的去除能力。真菌生长在2000ppm的金属(20.3%)中。在不同的pH(3.5、4.5和5.5)下,在不同的时间评估生物吸附。此外,还研究了28°C至45°C温度范围内的温度以及在100至500 mg/L的不同初始浓度下Hg(II)的去除效果。在pH为5.5和28℃的条件下,最高的生物吸附率(100 mg/L金属和1 g生物质的吸附率为83.2%)为24小时。就温度而言,最高去除率为28℃,24小时去除率为83.2%,在较高的生物质浓度下,去除率最高(5g生物质12小时去除率100%)。真菌生物质在培养7天后和5g生物质(100mL水)对金属的原位去除能力良好,在污染水中去除率为69%,因此可用于去除工业废水。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Biosorption of mercury (II) from aqueous solution onto biomass of Aspergillus niger
Mercury (II) removal capacity in aqueous solution by Aspergillus niger biomass was analyzed by the atomic absorption spectrometry method. The fungus grew in 2000 ppm of the metal (20.3%). Biosorption was evaluated at different pH (3.5, 4.5, and 5.5) at different times. In addition, the effect of temperature in the range of 28°C to 45oC and removal at different initial concentrations of Hg (II) from 100 to 500 mg/L were also studied. The highest biosorption (83.2% with 100 mg/L of the metal, and 1 g of biomass) was 24 h at pH of 5.5 and 28oC. With regard to temperature, the highest removal was to 28oC, with an 83.2% removal at 24 h, and at higher biomass concentrations, the removal was most efficient (100% in 12 h with 5 g of biomass). Fungal biomass showed good removal capacity of the metal in situ, 69% removal in contaminated water, after 7 days of incubation and 5 g of biomass (100 mL water), so it can be used to remove industrial wastewater.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mexican Journal of Biotechnology
Mexican Journal of Biotechnology Biochemistry, Genetics and Molecular Biology-Biotechnology
CiteScore
1.30
自引率
0.00%
发文量
12
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信