{"title":"用于评估球栅阵列封装焊球的激光超声检测系统的测量能力","authors":"Vishnu V. B. Reddy, J. Williamson, S. Sitaraman","doi":"10.4071/imaps.1501802","DOIUrl":null,"url":null,"abstract":"\n Laser ultrasonic inspection is a novel, noncontact, and nondestructive technique to evaluate the quality of solder interconnections in microelectronic packages. In this technique, identification of defects or failures in solder interconnections is performed by comparing the out-of-plane displacement signals, which are produced from the propagation of ultrasonic waves, from a known good reference sample and sample under test. The laboratory-scale dual-fiber array laser ultrasonic inspection system has successfully demonstrated identifying the defects and failures in the solder interconnections in advanced microelectronic packages such as chip-scale packages, plastic ball grid array packages, and flip-chip ball grid array packages. However, the success of any metrology system depends upon precise and accurate data to be useful in the microelectronic industry. This paper has demonstrated the measurement capability of the dual-fiber array laser ultrasonic inspection system using gage repeatability and reproducibility analysis. Industrial flip-chip ball grid array packages have been used for conducting experiments using the laser ultrasonic inspection system and the inspection data are used to perform repeatability and reproducibility analysis. Gage repeatability and reproducibility studies have also been used to choose a known good reference sample for comparing the samples under test.","PeriodicalId":35312,"journal":{"name":"Journal of Microelectronics and Electronic Packaging","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Measurement Capability of Laser Ultrasonic Inspection System for Evaluation of Ball-Grid Array Package Solder Balls\",\"authors\":\"Vishnu V. B. Reddy, J. Williamson, S. Sitaraman\",\"doi\":\"10.4071/imaps.1501802\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Laser ultrasonic inspection is a novel, noncontact, and nondestructive technique to evaluate the quality of solder interconnections in microelectronic packages. In this technique, identification of defects or failures in solder interconnections is performed by comparing the out-of-plane displacement signals, which are produced from the propagation of ultrasonic waves, from a known good reference sample and sample under test. The laboratory-scale dual-fiber array laser ultrasonic inspection system has successfully demonstrated identifying the defects and failures in the solder interconnections in advanced microelectronic packages such as chip-scale packages, plastic ball grid array packages, and flip-chip ball grid array packages. However, the success of any metrology system depends upon precise and accurate data to be useful in the microelectronic industry. This paper has demonstrated the measurement capability of the dual-fiber array laser ultrasonic inspection system using gage repeatability and reproducibility analysis. Industrial flip-chip ball grid array packages have been used for conducting experiments using the laser ultrasonic inspection system and the inspection data are used to perform repeatability and reproducibility analysis. Gage repeatability and reproducibility studies have also been used to choose a known good reference sample for comparing the samples under test.\",\"PeriodicalId\":35312,\"journal\":{\"name\":\"Journal of Microelectronics and Electronic Packaging\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Microelectronics and Electronic Packaging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4071/imaps.1501802\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Microelectronics and Electronic Packaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4071/imaps.1501802","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
Measurement Capability of Laser Ultrasonic Inspection System for Evaluation of Ball-Grid Array Package Solder Balls
Laser ultrasonic inspection is a novel, noncontact, and nondestructive technique to evaluate the quality of solder interconnections in microelectronic packages. In this technique, identification of defects or failures in solder interconnections is performed by comparing the out-of-plane displacement signals, which are produced from the propagation of ultrasonic waves, from a known good reference sample and sample under test. The laboratory-scale dual-fiber array laser ultrasonic inspection system has successfully demonstrated identifying the defects and failures in the solder interconnections in advanced microelectronic packages such as chip-scale packages, plastic ball grid array packages, and flip-chip ball grid array packages. However, the success of any metrology system depends upon precise and accurate data to be useful in the microelectronic industry. This paper has demonstrated the measurement capability of the dual-fiber array laser ultrasonic inspection system using gage repeatability and reproducibility analysis. Industrial flip-chip ball grid array packages have been used for conducting experiments using the laser ultrasonic inspection system and the inspection data are used to perform repeatability and reproducibility analysis. Gage repeatability and reproducibility studies have also been used to choose a known good reference sample for comparing the samples under test.
期刊介绍:
The International Microelectronics And Packaging Society (IMAPS) is the largest society dedicated to the advancement and growth of microelectronics and electronics packaging technologies through professional education. The Society’s portfolio of technologies is disseminated through symposia, conferences, workshops, professional development courses and other efforts. IMAPS currently has more than 4,000 members in the United States and more than 4,000 international members around the world.