{"title":"喜马拉雅荨麻纤维的表面改性作用及其形态、物理力学性能表征","authors":"R. Deepa, K. Kumaresan, K. Saravanan","doi":"10.2478/aut-2022-0010","DOIUrl":null,"url":null,"abstract":"Abstract The process of retting bast fiber plants for the production of long fiber has presented major challenges. Water retting, dew retting, chemical extraction, and micro-organism (fungi, enzymes) techniques were applied to the extraction of natural fibers. The two nettle samples were extracted with water retting for 14 days and dew retting for 4 weeks. This research investigated the effects on the traditional retting process of nettle fiber by fungi and bacteria formation in lignocellulosic. The latter biological extraction methods successfully degraded the lignin and pectin materials of the fiber and increases the cellulose content. These extraction methods produced high quality fiber and tensile strength at a low cost. This study determined the chemical, physical, and mechanical characteristics such as fiber cellulose, non-cellulosic content, tensile strength, tenacity, and elongation break to see how treatments affected them. The treated fiber surface morphology was characterized using scanning electron microscopy. To evaluate functional group alterations, Fourier-transform infrared spectroscopy was used on the fiber specimen.","PeriodicalId":49104,"journal":{"name":"Autex Research Journal","volume":"23 1","pages":"126 - 131"},"PeriodicalIF":1.1000,"publicationDate":"2022-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Effect of Surface Modification of Himalayan Nettle Fiber and Characterization of the Morphology, Physical and Mechanical Properties\",\"authors\":\"R. Deepa, K. Kumaresan, K. Saravanan\",\"doi\":\"10.2478/aut-2022-0010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The process of retting bast fiber plants for the production of long fiber has presented major challenges. Water retting, dew retting, chemical extraction, and micro-organism (fungi, enzymes) techniques were applied to the extraction of natural fibers. The two nettle samples were extracted with water retting for 14 days and dew retting for 4 weeks. This research investigated the effects on the traditional retting process of nettle fiber by fungi and bacteria formation in lignocellulosic. The latter biological extraction methods successfully degraded the lignin and pectin materials of the fiber and increases the cellulose content. These extraction methods produced high quality fiber and tensile strength at a low cost. This study determined the chemical, physical, and mechanical characteristics such as fiber cellulose, non-cellulosic content, tensile strength, tenacity, and elongation break to see how treatments affected them. The treated fiber surface morphology was characterized using scanning electron microscopy. To evaluate functional group alterations, Fourier-transform infrared spectroscopy was used on the fiber specimen.\",\"PeriodicalId\":49104,\"journal\":{\"name\":\"Autex Research Journal\",\"volume\":\"23 1\",\"pages\":\"126 - 131\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2022-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Autex Research Journal\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.2478/aut-2022-0010\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, TEXTILES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Autex Research Journal","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.2478/aut-2022-0010","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, TEXTILES","Score":null,"Total":0}
Effect of Surface Modification of Himalayan Nettle Fiber and Characterization of the Morphology, Physical and Mechanical Properties
Abstract The process of retting bast fiber plants for the production of long fiber has presented major challenges. Water retting, dew retting, chemical extraction, and micro-organism (fungi, enzymes) techniques were applied to the extraction of natural fibers. The two nettle samples were extracted with water retting for 14 days and dew retting for 4 weeks. This research investigated the effects on the traditional retting process of nettle fiber by fungi and bacteria formation in lignocellulosic. The latter biological extraction methods successfully degraded the lignin and pectin materials of the fiber and increases the cellulose content. These extraction methods produced high quality fiber and tensile strength at a low cost. This study determined the chemical, physical, and mechanical characteristics such as fiber cellulose, non-cellulosic content, tensile strength, tenacity, and elongation break to see how treatments affected them. The treated fiber surface morphology was characterized using scanning electron microscopy. To evaluate functional group alterations, Fourier-transform infrared spectroscopy was used on the fiber specimen.
期刊介绍:
Only few journals deal with textile research at an international and global level complying with the highest standards.
Autex Research Journal has the aim to play a leading role in distributing scientific and technological research results on textiles publishing original and innovative papers after peer reviewing, guaranteeing quality and excellence.
Everybody dedicated to textiles and textile related materials is invited to submit papers and to contribute to a positive and appealing image of this Journal.