对Drinfeld塔的p- adic上同调的分解

IF 2.8 1区 数学 Q1 MATHEMATICS
P. Colmez, Gabriel Dospinescu, Wiesława Nizioł
{"title":"对Drinfeld塔的p- adic上同调的分解","authors":"P. Colmez, Gabriel Dospinescu, Wiesława Nizioł","doi":"10.1017/fmp.2023.15","DOIUrl":null,"url":null,"abstract":"Résumé For a finite extension F of \n${\\mathbf Q}_p$\n , Drinfeld defined a tower of coverings of (the Drinfeld half-plane). For \n$F = {\\mathbf Q}_p$\n , we describe a decomposition of the p-adic geometric étale cohomology of this tower analogous to Emerton’s decomposition of completed cohomology of the tower of modular curves. A crucial ingredient is a finiteness theorem for the arithmetic étale cohomology modulo p whose proof uses Scholze’s functor, global ingredients, and a computation of nearby cycles which makes it possible to prove that this cohomology has finite presentation. This last result holds for all F; for \n$F\\neq {\\mathbf Q}_p$\n , it implies that the representations of \n$\\mathrm{GL}_2(F)$\n obtained from the cohomology of the Drinfeld tower are not admissible contrary to the case \n$F = {\\mathbf Q}_p$\n .","PeriodicalId":56024,"journal":{"name":"Forum of Mathematics Pi","volume":" ","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2022-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Factorisation de la cohomologie étale p-adique de la tour de Drinfeld\",\"authors\":\"P. Colmez, Gabriel Dospinescu, Wiesława Nizioł\",\"doi\":\"10.1017/fmp.2023.15\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Résumé For a finite extension F of \\n${\\\\mathbf Q}_p$\\n , Drinfeld defined a tower of coverings of (the Drinfeld half-plane). For \\n$F = {\\\\mathbf Q}_p$\\n , we describe a decomposition of the p-adic geometric étale cohomology of this tower analogous to Emerton’s decomposition of completed cohomology of the tower of modular curves. A crucial ingredient is a finiteness theorem for the arithmetic étale cohomology modulo p whose proof uses Scholze’s functor, global ingredients, and a computation of nearby cycles which makes it possible to prove that this cohomology has finite presentation. This last result holds for all F; for \\n$F\\\\neq {\\\\mathbf Q}_p$\\n , it implies that the representations of \\n$\\\\mathrm{GL}_2(F)$\\n obtained from the cohomology of the Drinfeld tower are not admissible contrary to the case \\n$F = {\\\\mathbf Q}_p$\\n .\",\"PeriodicalId\":56024,\"journal\":{\"name\":\"Forum of Mathematics Pi\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2022-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Forum of Mathematics Pi\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/fmp.2023.15\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forum of Mathematics Pi","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/fmp.2023.15","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 4

摘要

Résumé对于${\mathbf Q}_p$的有限扩张F,Drinfeld定义了(Drinfeld半平面)的覆盖物塔。对于$F={\mathbf Q}_p$,我们描述了该塔的p-adic几何étale上同调的分解,类似于模曲线塔的完整上同调Emerton分解。一个关键成分是算术上同调模p的有限性定理,其证明使用了Scholze的函子、全局成分和附近循环的计算,这使得证明该上同调具有有限表示成为可能。最后一个结果适用于所有F;对于$F\neq{\mathbf Q}_p$,它意味着$\mathrm的表示{GL}_2(F) 从Drinfeld塔的上同调得到的$与情况$F={\mathbf Q}_p$相反是不可容许的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Factorisation de la cohomologie étale p-adique de la tour de Drinfeld
Résumé For a finite extension F of ${\mathbf Q}_p$ , Drinfeld defined a tower of coverings of (the Drinfeld half-plane). For $F = {\mathbf Q}_p$ , we describe a decomposition of the p-adic geometric étale cohomology of this tower analogous to Emerton’s decomposition of completed cohomology of the tower of modular curves. A crucial ingredient is a finiteness theorem for the arithmetic étale cohomology modulo p whose proof uses Scholze’s functor, global ingredients, and a computation of nearby cycles which makes it possible to prove that this cohomology has finite presentation. This last result holds for all F; for $F\neq {\mathbf Q}_p$ , it implies that the representations of $\mathrm{GL}_2(F)$ obtained from the cohomology of the Drinfeld tower are not admissible contrary to the case $F = {\mathbf Q}_p$ .
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Forum of Mathematics Pi
Forum of Mathematics Pi Mathematics-Statistics and Probability
CiteScore
3.50
自引率
0.00%
发文量
21
审稿时长
19 weeks
期刊介绍: Forum of Mathematics, Pi is the open access alternative to the leading generalist mathematics journals and are of real interest to a broad cross-section of all mathematicians. Papers published are of the highest quality. Forum of Mathematics, Pi and Forum of Mathematics, Sigma are an exciting new development in journal publishing. Together they offer fully open access publication combined with peer-review standards set by an international editorial board of the highest calibre, and all backed by Cambridge University Press and our commitment to quality. Strong research papers from all parts of pure mathematics and related areas are welcomed. All published papers are free online to readers in perpetuity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信