幂零李群中的近似格和Meyer集

IF 1 3区 数学 Q1 MATHEMATICS
S. Machado
{"title":"幂零李群中的近似格和Meyer集","authors":"S. Machado","doi":"10.19086/da.11886","DOIUrl":null,"url":null,"abstract":"We show that uniform approximate lattices in nilpotent Lie groups are subsets of model sets. This extends Y.Meyer's theorem about quasi-crystals in Euclidean spaces. We derive from this structure theorem a characterisation of connected, simply connected, nilpotent Lie groups containing approximate lattices as the groups whose Lie algebra have structure constants lying in $\\overline{\\mathbb{Q}}$.","PeriodicalId":37312,"journal":{"name":"Discrete Analysis","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2018-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"Approximate lattices and Meyer sets in nilpotent Lie groups\",\"authors\":\"S. Machado\",\"doi\":\"10.19086/da.11886\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show that uniform approximate lattices in nilpotent Lie groups are subsets of model sets. This extends Y.Meyer's theorem about quasi-crystals in Euclidean spaces. We derive from this structure theorem a characterisation of connected, simply connected, nilpotent Lie groups containing approximate lattices as the groups whose Lie algebra have structure constants lying in $\\\\overline{\\\\mathbb{Q}}$.\",\"PeriodicalId\":37312,\"journal\":{\"name\":\"Discrete Analysis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2018-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.19086/da.11886\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.19086/da.11886","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 19

摘要

我们证明了幂零李群中的一致近似格是模型集的子集。这扩展了关于欧氏空间中拟晶体的Y.Meyer定理。我们从这个结构定理导出了包含近似格的连通、单连通、幂零李群的特征,这些近似格是李代数的结构常数位于$\overline{\mathbb{Q}}$中的群。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Approximate lattices and Meyer sets in nilpotent Lie groups
We show that uniform approximate lattices in nilpotent Lie groups are subsets of model sets. This extends Y.Meyer's theorem about quasi-crystals in Euclidean spaces. We derive from this structure theorem a characterisation of connected, simply connected, nilpotent Lie groups containing approximate lattices as the groups whose Lie algebra have structure constants lying in $\overline{\mathbb{Q}}$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Discrete Analysis
Discrete Analysis Mathematics-Algebra and Number Theory
CiteScore
1.60
自引率
0.00%
发文量
1
审稿时长
17 weeks
期刊介绍: Discrete Analysis is a mathematical journal that aims to publish articles that are analytical in flavour but that also have an impact on the study of discrete structures. The areas covered include (all or parts of) harmonic analysis, ergodic theory, topological dynamics, growth in groups, analytic number theory, additive combinatorics, combinatorial number theory, extremal and probabilistic combinatorics, combinatorial geometry, convexity, metric geometry, and theoretical computer science. As a rough guideline, we are looking for papers that are likely to be of genuine interest to the editors of the journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信