{"title":"垂直、水平和倾斜管道中介质粘度两相流段塞频率的预测","authors":"G. Abdul-Majeed, Mahshid Firouzi, G. Soto‐Cortes","doi":"10.2118/202473-pa","DOIUrl":null,"url":null,"abstract":"\n Several experimental studies have been conducted to investigate the effect of liquid viscosity on slug frequency in horizontal, vertical, and inclined two-phase flows. Analyses of these studies reveal that the slug frequency is positively related to superficial liquid velocity and liquid viscosity; the superficial gas velocity has a dual minor effect on slug frequency, with an initial increase for low superficial gas velocity and then a decrease for high superficial gas velocity; and the slug frequency increases with increasing flow deviation from horizontal. Also, the analyses reveal that for inclined viscous flow, the slug frequency and slug length follow the same inverse relationship shown in horizontal and vertical slug flows. In the literature, several models have been developed for predicting slug frequency in viscous horizontal flows, whereas only a few models exist for viscous vertical and inclined flows. In this study, we aim to develop models for prediction of slug frequency in two-phase flow of medium liquid viscosity (30 ≤ μL ≤ 250 mPa·s). Dimensional analysis of four published experimental data sets (218 data points) indicates that slug frequency is related to two dimensionless numbers; namely, a modified Froude number and inverse viscosity number. As a result, three slug frequency closure models are proposed for vertical, horizontal, and inclined flows, using a combination of these two numbers. The proposed models are tested against the four data sets, and very good results are obtained, with correlation coefficients ranging from 0.96 to 0.97.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2020-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.2118/202473-pa","citationCount":"4","resultStr":"{\"title\":\"Prediction of Slug Frequency for Medium Liquid Viscosity Two-Phase Flow in Vertical, Horizontal, and Inclined Pipes\",\"authors\":\"G. Abdul-Majeed, Mahshid Firouzi, G. Soto‐Cortes\",\"doi\":\"10.2118/202473-pa\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Several experimental studies have been conducted to investigate the effect of liquid viscosity on slug frequency in horizontal, vertical, and inclined two-phase flows. Analyses of these studies reveal that the slug frequency is positively related to superficial liquid velocity and liquid viscosity; the superficial gas velocity has a dual minor effect on slug frequency, with an initial increase for low superficial gas velocity and then a decrease for high superficial gas velocity; and the slug frequency increases with increasing flow deviation from horizontal. Also, the analyses reveal that for inclined viscous flow, the slug frequency and slug length follow the same inverse relationship shown in horizontal and vertical slug flows. In the literature, several models have been developed for predicting slug frequency in viscous horizontal flows, whereas only a few models exist for viscous vertical and inclined flows. In this study, we aim to develop models for prediction of slug frequency in two-phase flow of medium liquid viscosity (30 ≤ μL ≤ 250 mPa·s). Dimensional analysis of four published experimental data sets (218 data points) indicates that slug frequency is related to two dimensionless numbers; namely, a modified Froude number and inverse viscosity number. As a result, three slug frequency closure models are proposed for vertical, horizontal, and inclined flows, using a combination of these two numbers. The proposed models are tested against the four data sets, and very good results are obtained, with correlation coefficients ranging from 0.96 to 0.97.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2020-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.2118/202473-pa\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.2118/202473-pa\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2118/202473-pa","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Prediction of Slug Frequency for Medium Liquid Viscosity Two-Phase Flow in Vertical, Horizontal, and Inclined Pipes
Several experimental studies have been conducted to investigate the effect of liquid viscosity on slug frequency in horizontal, vertical, and inclined two-phase flows. Analyses of these studies reveal that the slug frequency is positively related to superficial liquid velocity and liquid viscosity; the superficial gas velocity has a dual minor effect on slug frequency, with an initial increase for low superficial gas velocity and then a decrease for high superficial gas velocity; and the slug frequency increases with increasing flow deviation from horizontal. Also, the analyses reveal that for inclined viscous flow, the slug frequency and slug length follow the same inverse relationship shown in horizontal and vertical slug flows. In the literature, several models have been developed for predicting slug frequency in viscous horizontal flows, whereas only a few models exist for viscous vertical and inclined flows. In this study, we aim to develop models for prediction of slug frequency in two-phase flow of medium liquid viscosity (30 ≤ μL ≤ 250 mPa·s). Dimensional analysis of four published experimental data sets (218 data points) indicates that slug frequency is related to two dimensionless numbers; namely, a modified Froude number and inverse viscosity number. As a result, three slug frequency closure models are proposed for vertical, horizontal, and inclined flows, using a combination of these two numbers. The proposed models are tested against the four data sets, and very good results are obtained, with correlation coefficients ranging from 0.96 to 0.97.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.