利用多变量深度学习预测ENSO

IF 2.3 4区 地球科学 Q3 METEOROLOGY & ATMOSPHERIC SCIENCES
Yue Chen , Xiaomeng Huang , Jing-Jia Luo , Yanluan Lin , Jonathon S. Wright , Youyu Lu , Xingrong Chen , Hua Jiang , Pengfei Lin
{"title":"利用多变量深度学习预测ENSO","authors":"Yue Chen ,&nbsp;Xiaomeng Huang ,&nbsp;Jing-Jia Luo ,&nbsp;Yanluan Lin ,&nbsp;Jonathon S. Wright ,&nbsp;Youyu Lu ,&nbsp;Xingrong Chen ,&nbsp;Hua Jiang ,&nbsp;Pengfei Lin","doi":"10.1016/j.aosl.2023.100350","DOIUrl":null,"url":null,"abstract":"<div><p>A novel multivariable prediction system based on a deep learning (DL) algorithm, i.e., the residual neural network and pure observations, was developed to improve the prediction of the El Niño–Southern Oscillation (ENSO). Optimal predictors are automatically determined using the maximal information for spatial filtering and the Taylor diagram criteria, enabling the best prediction skills at lead times of eight months compared with most operational prediction models. The hindcast skill for the most challenging decade (2011–18) outperforms the multi-model ensemble operational forecasts. At the six-month lead, the correlation (COEF) skill of the DL model reaches 0.82 with a normalized root-mean-square error (RMSE) of 0.58 °C, which is significantly better than the average multi-model performance (COEF = 0.70 and RMSE = 0.73°C). DL prediction can effectively alleviate the long-standing spring predictability barrier problem. The automatically selected optimal precursors can explain well the typical ENSO evolution driven by both tropical dynamics and extratropical impacts.</p><p>摘要</p><p>本文基于残差神经网络和观测数据构建了一套深度学习多因子预报测模型, 以改进厄尔尼诺-南方涛动(ENSO)的预报. 该模型基于最大信息系数进行因子时空特征提取, 并根据泰勒图的评估标准可自动确定关键预报因子进行预报. 该模型在超前8个月以内的预报性能要优于当前传统的业务预报模式. 2011–2018年间, 该模型的预报性能优于多模式集成预报的结果. 在超前6个月预报时效上, 模型预报相关性可达0.82, 标准化后的均方根误差仅为0.58°C, 多模式集成预报的相关性和标准化后的均方根误差分别为0.70和0.73°C. 该模型春季预报障碍问题有所缓解, 并且自动选取的关键预报因子可用于解释热带和副热带热动力过程对于ENSO变化的影响.</p></div>","PeriodicalId":47210,"journal":{"name":"Atmospheric and Oceanic Science Letters","volume":"16 4","pages":"Article 100350"},"PeriodicalIF":2.3000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Prediction of ENSO using multivariable deep learning\",\"authors\":\"Yue Chen ,&nbsp;Xiaomeng Huang ,&nbsp;Jing-Jia Luo ,&nbsp;Yanluan Lin ,&nbsp;Jonathon S. Wright ,&nbsp;Youyu Lu ,&nbsp;Xingrong Chen ,&nbsp;Hua Jiang ,&nbsp;Pengfei Lin\",\"doi\":\"10.1016/j.aosl.2023.100350\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A novel multivariable prediction system based on a deep learning (DL) algorithm, i.e., the residual neural network and pure observations, was developed to improve the prediction of the El Niño–Southern Oscillation (ENSO). Optimal predictors are automatically determined using the maximal information for spatial filtering and the Taylor diagram criteria, enabling the best prediction skills at lead times of eight months compared with most operational prediction models. The hindcast skill for the most challenging decade (2011–18) outperforms the multi-model ensemble operational forecasts. At the six-month lead, the correlation (COEF) skill of the DL model reaches 0.82 with a normalized root-mean-square error (RMSE) of 0.58 °C, which is significantly better than the average multi-model performance (COEF = 0.70 and RMSE = 0.73°C). DL prediction can effectively alleviate the long-standing spring predictability barrier problem. The automatically selected optimal precursors can explain well the typical ENSO evolution driven by both tropical dynamics and extratropical impacts.</p><p>摘要</p><p>本文基于残差神经网络和观测数据构建了一套深度学习多因子预报测模型, 以改进厄尔尼诺-南方涛动(ENSO)的预报. 该模型基于最大信息系数进行因子时空特征提取, 并根据泰勒图的评估标准可自动确定关键预报因子进行预报. 该模型在超前8个月以内的预报性能要优于当前传统的业务预报模式. 2011–2018年间, 该模型的预报性能优于多模式集成预报的结果. 在超前6个月预报时效上, 模型预报相关性可达0.82, 标准化后的均方根误差仅为0.58°C, 多模式集成预报的相关性和标准化后的均方根误差分别为0.70和0.73°C. 该模型春季预报障碍问题有所缓解, 并且自动选取的关键预报因子可用于解释热带和副热带热动力过程对于ENSO变化的影响.</p></div>\",\"PeriodicalId\":47210,\"journal\":{\"name\":\"Atmospheric and Oceanic Science Letters\",\"volume\":\"16 4\",\"pages\":\"Article 100350\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2023-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Atmospheric and Oceanic Science Letters\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1674283423000259\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmospheric and Oceanic Science Letters","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1674283423000259","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 1

摘要

为了改进El Niño-Southern涛动(ENSO)的预测,提出了一种基于深度学习(DL)算法的多变量预测系统,即残差神经网络和纯观测。使用空间过滤的最大信息和泰勒图标准自动确定最佳预测器,与大多数操作预测模型相比,在8个月的前置时间内实现最佳预测技能。在最具挑战性的10年(2011-18年)中,后验技能优于多模式集合业务预测。超前6个月时,DL模型的相关(COEF)技能达到0.82,归一化均方根误差(RMSE)为0.58°C,显著优于多模型平均性能(COEF = 0.70, RMSE = 0.73°C)。深度学习预测可以有效缓解长期存在的春季预测障碍问题。自动选择的最优前兆可以很好地解释热带动力和温带影响共同驱动的典型ENSO演变。摘要本文基于残差神经网络和观测数据构建了一套深度学习多因子预报测模型,以改进厄尔尼诺——南方涛动(ENSO)的预报。该模型基于最大信息系数进行因子时空特征提取, 并根据泰勒图的评估标准可自动确定关键预报因子进行预报. 该模型在超前8个月以内的预报性能要优于当前传统的业务预报模式. 2011–2018年间, 该模型的预报性能优于多模式集成预报的结果. 在超前6个月预报时效上,模型预报相关性可达0.82,标准化后的均方根误差仅为0.58°C,多模式集成预报的相关性和标准化后的均方根误差分别为0.70和0.73°C。该模型春季预报障碍问题有所缓解,并且自动选取的关键预报因子可用于解释热带和副热带热动力过程对于ENSO变化的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Prediction of ENSO using multivariable deep learning

Prediction of ENSO using multivariable deep learning

A novel multivariable prediction system based on a deep learning (DL) algorithm, i.e., the residual neural network and pure observations, was developed to improve the prediction of the El Niño–Southern Oscillation (ENSO). Optimal predictors are automatically determined using the maximal information for spatial filtering and the Taylor diagram criteria, enabling the best prediction skills at lead times of eight months compared with most operational prediction models. The hindcast skill for the most challenging decade (2011–18) outperforms the multi-model ensemble operational forecasts. At the six-month lead, the correlation (COEF) skill of the DL model reaches 0.82 with a normalized root-mean-square error (RMSE) of 0.58 °C, which is significantly better than the average multi-model performance (COEF = 0.70 and RMSE = 0.73°C). DL prediction can effectively alleviate the long-standing spring predictability barrier problem. The automatically selected optimal precursors can explain well the typical ENSO evolution driven by both tropical dynamics and extratropical impacts.

摘要

本文基于残差神经网络和观测数据构建了一套深度学习多因子预报测模型, 以改进厄尔尼诺-南方涛动(ENSO)的预报. 该模型基于最大信息系数进行因子时空特征提取, 并根据泰勒图的评估标准可自动确定关键预报因子进行预报. 该模型在超前8个月以内的预报性能要优于当前传统的业务预报模式. 2011–2018年间, 该模型的预报性能优于多模式集成预报的结果. 在超前6个月预报时效上, 模型预报相关性可达0.82, 标准化后的均方根误差仅为0.58°C, 多模式集成预报的相关性和标准化后的均方根误差分别为0.70和0.73°C. 该模型春季预报障碍问题有所缓解, 并且自动选取的关键预报因子可用于解释热带和副热带热动力过程对于ENSO变化的影响.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Atmospheric and Oceanic Science Letters
Atmospheric and Oceanic Science Letters METEOROLOGY & ATMOSPHERIC SCIENCES-
CiteScore
4.20
自引率
8.70%
发文量
925
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信