Virginia L. Pszczolkowski , Haowen Hu , Jun Zhang , Meghan K. Connelly , Amelia S. Munsterman , Sebastian I. Arriola Apelo
{"title":"蛋氨酸、亮氨酸和胰岛素对泌乳奶牛循环浓度和乳腺能量底物和氨基酸提取的影响。","authors":"Virginia L. Pszczolkowski , Haowen Hu , Jun Zhang , Meghan K. Connelly , Amelia S. Munsterman , Sebastian I. Arriola Apelo","doi":"10.1016/j.domaniend.2022.106730","DOIUrl":null,"url":null,"abstract":"<div><p>The aim of this experiment was to test whether insulin potentiates the effects of two abomasally infused amino acids (AA), leucine and methionine (LM), on mammary extraction efficiency of energetic and nitrogenous nutrients. Six lactating Holstein cows (155 ± 9 DIM) were ruminally-cannulated and had the right carotid artery subcutaneously transposed. Cows were fed a 20% metabolizable protein-restricted diet and abomasally infused with water (8 L/d) or AA (Met 26 g/d, Leu 70 g/d) for 8 h/d, for 7 days. On the last day of each period, cows were intravenously infused with saline (0.9% NaCl, 110 mL/h) or subjected to 8 h hyperinsulinemic clamp (IC) alongside abomasal infusions. For IC, insulin was infused at 1 µg/kg/h. Normoglycemia was maintained by varying glucose (50% w/v in water) infusion rate based on coccygeal vein glucose concentration. Carotid arterial and subcutaneous abdominal (mammary) vein blood samples were collected at 0, 1, 2, 4, and 6 h from the start of infusions. Milk weights and samples for baseline measurements of production were taken on day 5 PM, day 6 AM and PM, and day 7 AM of the experimental period. A final milk weight and sample was taken immediately after abomasal and intravenous infusions on day 7 PM for assessing the interaction between insulin and the infused AA. The experiment had an incompletely replicated Latin square design with a 2 × 2 factorial arrangement of treatments (abomasal and intravenous infusion). Baseline milk production when cows were only receiving abomasal infusions was largely unaffected by LM, but milk protein yield tended to be decreased. On day 7, LM tended to positively increase milk fat and de novo fatty acid content, and IC tended to decrease milk protein content. Both milk urea nitrogen and plasma urea nitrogen were decreased by IC. Circulating AA concentrations in plasma were decreased by both LM and IC, but mammary extraction efficiency was affected by neither. Infusion of LM had no effect on any energy metabolite analyzed. Circulating non-esterified fatty acid concentration was decreased by IC, with no effect on mammary extraction efficiency. Mammary extraction efficiency of both acetate and β-hydroxybutyrate were decreased by IC. Overall, while both circulating concentrations of energy metabolites and amino acids were decreased in response to treatments, this was not due to improved mammary extraction efficiency.</p></div>","PeriodicalId":11356,"journal":{"name":"Domestic animal endocrinology","volume":"81 ","pages":"Article 106730"},"PeriodicalIF":1.9000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Effects of methionine, leucine, and insulin on circulating concentrations and mammary extraction of energy substrates and amino acids in lactating dairy cows\",\"authors\":\"Virginia L. Pszczolkowski , Haowen Hu , Jun Zhang , Meghan K. Connelly , Amelia S. Munsterman , Sebastian I. Arriola Apelo\",\"doi\":\"10.1016/j.domaniend.2022.106730\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The aim of this experiment was to test whether insulin potentiates the effects of two abomasally infused amino acids (AA), leucine and methionine (LM), on mammary extraction efficiency of energetic and nitrogenous nutrients. Six lactating Holstein cows (155 ± 9 DIM) were ruminally-cannulated and had the right carotid artery subcutaneously transposed. Cows were fed a 20% metabolizable protein-restricted diet and abomasally infused with water (8 L/d) or AA (Met 26 g/d, Leu 70 g/d) for 8 h/d, for 7 days. On the last day of each period, cows were intravenously infused with saline (0.9% NaCl, 110 mL/h) or subjected to 8 h hyperinsulinemic clamp (IC) alongside abomasal infusions. For IC, insulin was infused at 1 µg/kg/h. Normoglycemia was maintained by varying glucose (50% w/v in water) infusion rate based on coccygeal vein glucose concentration. Carotid arterial and subcutaneous abdominal (mammary) vein blood samples were collected at 0, 1, 2, 4, and 6 h from the start of infusions. Milk weights and samples for baseline measurements of production were taken on day 5 PM, day 6 AM and PM, and day 7 AM of the experimental period. A final milk weight and sample was taken immediately after abomasal and intravenous infusions on day 7 PM for assessing the interaction between insulin and the infused AA. The experiment had an incompletely replicated Latin square design with a 2 × 2 factorial arrangement of treatments (abomasal and intravenous infusion). Baseline milk production when cows were only receiving abomasal infusions was largely unaffected by LM, but milk protein yield tended to be decreased. On day 7, LM tended to positively increase milk fat and de novo fatty acid content, and IC tended to decrease milk protein content. Both milk urea nitrogen and plasma urea nitrogen were decreased by IC. Circulating AA concentrations in plasma were decreased by both LM and IC, but mammary extraction efficiency was affected by neither. Infusion of LM had no effect on any energy metabolite analyzed. Circulating non-esterified fatty acid concentration was decreased by IC, with no effect on mammary extraction efficiency. Mammary extraction efficiency of both acetate and β-hydroxybutyrate were decreased by IC. Overall, while both circulating concentrations of energy metabolites and amino acids were decreased in response to treatments, this was not due to improved mammary extraction efficiency.</p></div>\",\"PeriodicalId\":11356,\"journal\":{\"name\":\"Domestic animal endocrinology\",\"volume\":\"81 \",\"pages\":\"Article 106730\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2022-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Domestic animal endocrinology\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0739724022000212\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AGRICULTURE, DAIRY & ANIMAL SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Domestic animal endocrinology","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0739724022000212","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AGRICULTURE, DAIRY & ANIMAL SCIENCE","Score":null,"Total":0}
Effects of methionine, leucine, and insulin on circulating concentrations and mammary extraction of energy substrates and amino acids in lactating dairy cows
The aim of this experiment was to test whether insulin potentiates the effects of two abomasally infused amino acids (AA), leucine and methionine (LM), on mammary extraction efficiency of energetic and nitrogenous nutrients. Six lactating Holstein cows (155 ± 9 DIM) were ruminally-cannulated and had the right carotid artery subcutaneously transposed. Cows were fed a 20% metabolizable protein-restricted diet and abomasally infused with water (8 L/d) or AA (Met 26 g/d, Leu 70 g/d) for 8 h/d, for 7 days. On the last day of each period, cows were intravenously infused with saline (0.9% NaCl, 110 mL/h) or subjected to 8 h hyperinsulinemic clamp (IC) alongside abomasal infusions. For IC, insulin was infused at 1 µg/kg/h. Normoglycemia was maintained by varying glucose (50% w/v in water) infusion rate based on coccygeal vein glucose concentration. Carotid arterial and subcutaneous abdominal (mammary) vein blood samples were collected at 0, 1, 2, 4, and 6 h from the start of infusions. Milk weights and samples for baseline measurements of production were taken on day 5 PM, day 6 AM and PM, and day 7 AM of the experimental period. A final milk weight and sample was taken immediately after abomasal and intravenous infusions on day 7 PM for assessing the interaction between insulin and the infused AA. The experiment had an incompletely replicated Latin square design with a 2 × 2 factorial arrangement of treatments (abomasal and intravenous infusion). Baseline milk production when cows were only receiving abomasal infusions was largely unaffected by LM, but milk protein yield tended to be decreased. On day 7, LM tended to positively increase milk fat and de novo fatty acid content, and IC tended to decrease milk protein content. Both milk urea nitrogen and plasma urea nitrogen were decreased by IC. Circulating AA concentrations in plasma were decreased by both LM and IC, but mammary extraction efficiency was affected by neither. Infusion of LM had no effect on any energy metabolite analyzed. Circulating non-esterified fatty acid concentration was decreased by IC, with no effect on mammary extraction efficiency. Mammary extraction efficiency of both acetate and β-hydroxybutyrate were decreased by IC. Overall, while both circulating concentrations of energy metabolites and amino acids were decreased in response to treatments, this was not due to improved mammary extraction efficiency.
期刊介绍:
Domestic Animal Endocrinology publishes scientific papers dealing with the study of the endocrine physiology of domestic animal species. Those manuscripts utilizing other species as models for clinical or production problems associated with domestic animals are also welcome.
Topics covered include:
Classical and reproductive endocrinology-
Clinical and applied endocrinology-
Regulation of hormone secretion-
Hormone action-
Molecular biology-
Cytokines-
Growth factors