剩余有限群的连续多个拟等距类

Pub Date : 2022-07-01 DOI:10.1017/S0017089523000137
Hip Kuen Chong, D. Wise
{"title":"剩余有限群的连续多个拟等距类","authors":"Hip Kuen Chong, D. Wise","doi":"10.1017/S0017089523000137","DOIUrl":null,"url":null,"abstract":"Abstract We study a family of finitely generated residually finite small-cancellation groups. These groups are quotients of \n$F_2$\n depending on a subset \n$S$\n of positive integers. Varying \n$S$\n yields continuously many groups up to quasi-isometry.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Continuously many quasi-isometry classes of residually finite groups\",\"authors\":\"Hip Kuen Chong, D. Wise\",\"doi\":\"10.1017/S0017089523000137\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We study a family of finitely generated residually finite small-cancellation groups. These groups are quotients of \\n$F_2$\\n depending on a subset \\n$S$\\n of positive integers. Varying \\n$S$\\n yields continuously many groups up to quasi-isometry.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/S0017089523000137\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/S0017089523000137","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

摘要我们研究了一类有限生成的剩余有限小消去群。这些群是$F_2$的商,取决于正整数的子集$S$。变化的$S$连续产生许多组,直到准等距。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Continuously many quasi-isometry classes of residually finite groups
Abstract We study a family of finitely generated residually finite small-cancellation groups. These groups are quotients of $F_2$ depending on a subset $S$ of positive integers. Varying $S$ yields continuously many groups up to quasi-isometry.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信