道路基础设施设备对环境和周围环境的影响

IF 3.1 Q2 ENVIRONMENTAL SCIENCES
N. Robinah, A. Safiki, O. Thomas, B. Annette
{"title":"道路基础设施设备对环境和周围环境的影响","authors":"N. Robinah, A. Safiki, O. Thomas, B. Annette","doi":"10.22034/GJESM.2022.02.09","DOIUrl":null,"url":null,"abstract":"BACKGROUND AND OBJECTIVES: The effect of infrastructure equipment is taking a toll on the health and economic well-being of residents all around the world. This is mainly because it contributes to ambient air pollution, noise, and vibration in the surroundings.  The study aimed at analyzing the effects of the road infrastructure equipment on the surroundings in Uganda. The emissions of carbon dioxide, carbon monoxide, nitrogen dioxide, hydrocarbons, and particulate matter were analyzed.METHODS: Six road infrastructure equipment were sampled consisting of an excavator, roller, grader, concrete mixer, tamper, and wheel loader, obtained from a case study project in Kampala city, Uganda. The diesel exhaust air emissions were computed and analyzed using the emissions rate equation model for non-road equipment, developed by Environmental Protection Agency.  This was based on the horsepower and power rating of the equipment. Noise and vibrations levels were obtained using a sound level meter, seismometers, and accelerators, while following the National Environment Regulations.FINDINGS: The greenhouse gas of carbon dioxide was the most predominant accounting for 84.1 percent of the total emissions. The grader was the highest emitter of this greenhouse gas, at 1,531.5 g/h, representing 37.1%. The lowest air pollutant emission was nitrogen dioxide at 1.43 g/h for the concrete mixer, representing 1.4%.  Overall, the equipment emitted more greenhouse gases than air criteria pollutants at 88.8% and 11.2% respectively. The highest criteria air pollutant was particulate matter at 100.5 g/h, emitted by the grader.  Most of the emissions met the standards stipulated by Environmental Protection Agency, for reducing emissions back to the environment, except particulate matter. However, the concentrations of some pollutants like carbon monoxide and nitrogen dioxide did not satisfy the limits required for ambient air quality that is safe for workers. All the equipment had noise levels way above the recommended 70.00 decibel, except for the wheel loader. Only the excavator produced vibrations higher than permissible vibration limit by 4%.CONCLUSION: The criteria air pollutants of carbon monoxide, nitrogen dioxide, and particulate matter emitted by the equipment were all not safe to the workers. They exceeded the permissible limits of 50 ppm, 5 ppm, and 0.02 g/kW/h respectively. This partly shows why ambient air pollution had been reported in urban centers in Uganda. The study shows the need for strengthening the regulations and monitoring of the construction equipment being used, in order to protect the surroundings.","PeriodicalId":46495,"journal":{"name":"GLOBAL JOURNAL OF ENVIRONMENTAL SCIENCE AND MANAGEMENT-GJESM","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2021-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Impact of road infrastructure equipment on the environment and surroundings\",\"authors\":\"N. Robinah, A. Safiki, O. Thomas, B. Annette\",\"doi\":\"10.22034/GJESM.2022.02.09\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"BACKGROUND AND OBJECTIVES: The effect of infrastructure equipment is taking a toll on the health and economic well-being of residents all around the world. This is mainly because it contributes to ambient air pollution, noise, and vibration in the surroundings.  The study aimed at analyzing the effects of the road infrastructure equipment on the surroundings in Uganda. The emissions of carbon dioxide, carbon monoxide, nitrogen dioxide, hydrocarbons, and particulate matter were analyzed.METHODS: Six road infrastructure equipment were sampled consisting of an excavator, roller, grader, concrete mixer, tamper, and wheel loader, obtained from a case study project in Kampala city, Uganda. The diesel exhaust air emissions were computed and analyzed using the emissions rate equation model for non-road equipment, developed by Environmental Protection Agency.  This was based on the horsepower and power rating of the equipment. Noise and vibrations levels were obtained using a sound level meter, seismometers, and accelerators, while following the National Environment Regulations.FINDINGS: The greenhouse gas of carbon dioxide was the most predominant accounting for 84.1 percent of the total emissions. The grader was the highest emitter of this greenhouse gas, at 1,531.5 g/h, representing 37.1%. The lowest air pollutant emission was nitrogen dioxide at 1.43 g/h for the concrete mixer, representing 1.4%.  Overall, the equipment emitted more greenhouse gases than air criteria pollutants at 88.8% and 11.2% respectively. The highest criteria air pollutant was particulate matter at 100.5 g/h, emitted by the grader.  Most of the emissions met the standards stipulated by Environmental Protection Agency, for reducing emissions back to the environment, except particulate matter. However, the concentrations of some pollutants like carbon monoxide and nitrogen dioxide did not satisfy the limits required for ambient air quality that is safe for workers. All the equipment had noise levels way above the recommended 70.00 decibel, except for the wheel loader. Only the excavator produced vibrations higher than permissible vibration limit by 4%.CONCLUSION: The criteria air pollutants of carbon monoxide, nitrogen dioxide, and particulate matter emitted by the equipment were all not safe to the workers. They exceeded the permissible limits of 50 ppm, 5 ppm, and 0.02 g/kW/h respectively. This partly shows why ambient air pollution had been reported in urban centers in Uganda. The study shows the need for strengthening the regulations and monitoring of the construction equipment being used, in order to protect the surroundings.\",\"PeriodicalId\":46495,\"journal\":{\"name\":\"GLOBAL JOURNAL OF ENVIRONMENTAL SCIENCE AND MANAGEMENT-GJESM\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2021-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"GLOBAL JOURNAL OF ENVIRONMENTAL SCIENCE AND MANAGEMENT-GJESM\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22034/GJESM.2022.02.09\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"GLOBAL JOURNAL OF ENVIRONMENTAL SCIENCE AND MANAGEMENT-GJESM","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22034/GJESM.2022.02.09","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 1

摘要

背景与目的:基础设施设备的影响正在对世界各地居民的健康和经济福祉造成损害。这主要是因为它造成了周围的空气污染、噪音和振动。这项研究的目的是分析乌干达道路基础设施设备对周围环境的影响。对二氧化碳、一氧化碳、二氧化氮、碳氢化合物和颗粒物的排放进行了分析。方法:从乌干达坎帕拉市的一个案例研究项目中获得了六种道路基础设施设备,包括挖掘机、压路机、平地机、混凝土搅拌机、捣碎机和轮式装载机。采用美国环境保护署开发的非道路设备排放速率方程模型对柴油机尾气排放进行了计算和分析。这是基于设备的马力和功率等级。噪音和振动水平是使用声级计、地震仪和加速器获得的,同时遵循国家环境法规。结果:二氧化碳是最主要的温室气体,占总排放量的84.1%。平地机是这种温室气体的最大排放者,为1531.5 g/h,占37.1%。空气污染物排放量最低的是混凝土搅拌机的二氧化氮,为1.43 g/h,占1.4%。总体而言,设备排放的温室气体比空气标准污染物多,分别为88.8%和11.2%。空气污染物的最高标准是分级机排放的颗粒物,每小时100.5克。除颗粒物外,大部分排放均达到美国环境保护署规定的减少向环境排放的标准。然而,一些污染物的浓度,如一氧化碳和二氧化氮,没有达到对工人安全的环境空气质量要求的限制。除了轮式装载机,所有设备的噪音水平都远远超过了建议的70.00分贝。只有挖掘机产生的振动比允许的振动极限高4%。结论:设备排放的一氧化碳、二氧化氮、颗粒物等空气污染物均不安全。它们分别超过了50ppm、5ppm和0.02 g/kW/h的允许值。这在一定程度上说明了为什么乌干达城市中心报告了环境空气污染。研究表明,需要加强对正在使用的施工设备的监管和监测,以保护周围环境。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Impact of road infrastructure equipment on the environment and surroundings
BACKGROUND AND OBJECTIVES: The effect of infrastructure equipment is taking a toll on the health and economic well-being of residents all around the world. This is mainly because it contributes to ambient air pollution, noise, and vibration in the surroundings.  The study aimed at analyzing the effects of the road infrastructure equipment on the surroundings in Uganda. The emissions of carbon dioxide, carbon monoxide, nitrogen dioxide, hydrocarbons, and particulate matter were analyzed.METHODS: Six road infrastructure equipment were sampled consisting of an excavator, roller, grader, concrete mixer, tamper, and wheel loader, obtained from a case study project in Kampala city, Uganda. The diesel exhaust air emissions were computed and analyzed using the emissions rate equation model for non-road equipment, developed by Environmental Protection Agency.  This was based on the horsepower and power rating of the equipment. Noise and vibrations levels were obtained using a sound level meter, seismometers, and accelerators, while following the National Environment Regulations.FINDINGS: The greenhouse gas of carbon dioxide was the most predominant accounting for 84.1 percent of the total emissions. The grader was the highest emitter of this greenhouse gas, at 1,531.5 g/h, representing 37.1%. The lowest air pollutant emission was nitrogen dioxide at 1.43 g/h for the concrete mixer, representing 1.4%.  Overall, the equipment emitted more greenhouse gases than air criteria pollutants at 88.8% and 11.2% respectively. The highest criteria air pollutant was particulate matter at 100.5 g/h, emitted by the grader.  Most of the emissions met the standards stipulated by Environmental Protection Agency, for reducing emissions back to the environment, except particulate matter. However, the concentrations of some pollutants like carbon monoxide and nitrogen dioxide did not satisfy the limits required for ambient air quality that is safe for workers. All the equipment had noise levels way above the recommended 70.00 decibel, except for the wheel loader. Only the excavator produced vibrations higher than permissible vibration limit by 4%.CONCLUSION: The criteria air pollutants of carbon monoxide, nitrogen dioxide, and particulate matter emitted by the equipment were all not safe to the workers. They exceeded the permissible limits of 50 ppm, 5 ppm, and 0.02 g/kW/h respectively. This partly shows why ambient air pollution had been reported in urban centers in Uganda. The study shows the need for strengthening the regulations and monitoring of the construction equipment being used, in order to protect the surroundings.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.90
自引率
2.90%
发文量
11
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信