A. Prabhakar, Deepti Verma, Nimisha Roy, Abhipsha Khadanga, Amar Dhwaj
{"title":"生物传感器在SARS-Cov-2检测中的作用:现状和未来展望","authors":"A. Prabhakar, Deepti Verma, Nimisha Roy, Abhipsha Khadanga, Amar Dhwaj","doi":"10.2174/1573413719666230714121859","DOIUrl":null,"url":null,"abstract":"\n\nThe world is fighting a pandemic so grave that perhaps it has never been witnessed before; COVID-19 is caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). As of August 31st, 2022, the WHO declared the total number of confirmed cases was 599,825,400, with 6,469,458 confirmed deaths from 223 countries under the scourge of this deadly virus. The SARS-CoV-2 is a β-coronavirus, which is an enveloped non-segmented positive-sense RNA virus. It is a close relative of the SARS and MERS viruses and has probably entered humans through bats. Human-to-human transmission is very rapid. People in contact with the patient or even the carriers became infected, leading to a widespread chain of contamination. We are presenting a mini-review on the role of biosensors in detecting SARS-CoV-2. Biosensors have been used for a very long time for viral detection and can be utilized for the prompt detection of the novel coronavirus. This article aims to provide a mini-review on the application of biosensors for the detection of the novel coronavirus with a focus on cost-effective paper-based sensors, nanobiosensors, Field effect transistors (FETs), and lab-on-chip integrated platforms.\n","PeriodicalId":10827,"journal":{"name":"Current Nanoscience","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2023-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Role Of Biosensors In Detection Of SARS-Cov-2: State-Of-The-Art And Future Prospects\",\"authors\":\"A. Prabhakar, Deepti Verma, Nimisha Roy, Abhipsha Khadanga, Amar Dhwaj\",\"doi\":\"10.2174/1573413719666230714121859\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n\\nThe world is fighting a pandemic so grave that perhaps it has never been witnessed before; COVID-19 is caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). As of August 31st, 2022, the WHO declared the total number of confirmed cases was 599,825,400, with 6,469,458 confirmed deaths from 223 countries under the scourge of this deadly virus. The SARS-CoV-2 is a β-coronavirus, which is an enveloped non-segmented positive-sense RNA virus. It is a close relative of the SARS and MERS viruses and has probably entered humans through bats. Human-to-human transmission is very rapid. People in contact with the patient or even the carriers became infected, leading to a widespread chain of contamination. We are presenting a mini-review on the role of biosensors in detecting SARS-CoV-2. Biosensors have been used for a very long time for viral detection and can be utilized for the prompt detection of the novel coronavirus. This article aims to provide a mini-review on the application of biosensors for the detection of the novel coronavirus with a focus on cost-effective paper-based sensors, nanobiosensors, Field effect transistors (FETs), and lab-on-chip integrated platforms.\\n\",\"PeriodicalId\":10827,\"journal\":{\"name\":\"Current Nanoscience\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Nanoscience\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.2174/1573413719666230714121859\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Nanoscience","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.2174/1573413719666230714121859","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
The Role Of Biosensors In Detection Of SARS-Cov-2: State-Of-The-Art And Future Prospects
The world is fighting a pandemic so grave that perhaps it has never been witnessed before; COVID-19 is caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). As of August 31st, 2022, the WHO declared the total number of confirmed cases was 599,825,400, with 6,469,458 confirmed deaths from 223 countries under the scourge of this deadly virus. The SARS-CoV-2 is a β-coronavirus, which is an enveloped non-segmented positive-sense RNA virus. It is a close relative of the SARS and MERS viruses and has probably entered humans through bats. Human-to-human transmission is very rapid. People in contact with the patient or even the carriers became infected, leading to a widespread chain of contamination. We are presenting a mini-review on the role of biosensors in detecting SARS-CoV-2. Biosensors have been used for a very long time for viral detection and can be utilized for the prompt detection of the novel coronavirus. This article aims to provide a mini-review on the application of biosensors for the detection of the novel coronavirus with a focus on cost-effective paper-based sensors, nanobiosensors, Field effect transistors (FETs), and lab-on-chip integrated platforms.
期刊介绍:
Current Nanoscience publishes (a) Authoritative/Mini Reviews, and (b) Original Research and Highlights written by experts covering the most recent advances in nanoscience and nanotechnology. All aspects of the field are represented including nano-structures, nano-bubbles, nano-droplets and nanofluids. Applications of nanoscience in physics, material science, chemistry, synthesis, environmental science, electronics, biomedical nanotechnology, biomedical engineering, biotechnology, medicine and pharmaceuticals are also covered. The journal is essential to all researches involved in nanoscience and its applied and fundamental areas of science, chemistry, physics, material science, engineering and medicine.
Current Nanoscience also welcomes submissions on the following topics of Nanoscience and Nanotechnology:
Nanoelectronics and photonics
Advanced Nanomaterials
Nanofabrication and measurement
Nanobiotechnology and nanomedicine
Nanotechnology for energy
Sensors and actuator
Computational nanoscience and technology.