{"title":"淀粉基生物活性化合物递送系统的最新进展:配方和应用","authors":"Sadia Aslam, Aqsa Akhtar, Nilesh Nirmal, Nauman Khalid, Sajid Maqsood","doi":"10.1007/s12393-022-09311-5","DOIUrl":null,"url":null,"abstract":"<div><p>Bioactive compounds exhibit numerous health benefits; however, they are highly sensitive to degradation under various process conditions. Applications of these compounds are limited in food and pharmaceutical products due to their quick release, low solubility, possible interactions with other ingredients, and reduced biological potential. Encapsulation in suitable carrier systems could protect their bioactivity and retain sensorial properties of products during processing and storage. Starch is a natural polysaccharide, and its physicochemical properties offer an excellent carrier system for various bioactive compounds. In this review, comprehensive discussions have been provided on the different fabrication techniques of starch-based micro, nano-carrier systems and their applications for various bioactive compounds have been discussed also. Various techniques including nano-spray drying, electrospinning, extrusion, acid hydrolysis, nanoemulsification, nanoprecipitation, microfluidization, ultrasonication, and gamma-irradiation have been employed to fabricate micro and nanocarrier systems from a starch biopolymer. Starch-based nanostructures are emerging as a novel and promising nano-vehicles for delivering bioactive compounds.</p></div>","PeriodicalId":565,"journal":{"name":"Food Engineering Reviews","volume":"14 2","pages":"271 - 291"},"PeriodicalIF":5.3000,"publicationDate":"2022-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s12393-022-09311-5.pdf","citationCount":"4","resultStr":"{\"title\":\"Recent Developments in Starch-Based Delivery Systems of Bioactive Compounds: Formulations and Applications\",\"authors\":\"Sadia Aslam, Aqsa Akhtar, Nilesh Nirmal, Nauman Khalid, Sajid Maqsood\",\"doi\":\"10.1007/s12393-022-09311-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Bioactive compounds exhibit numerous health benefits; however, they are highly sensitive to degradation under various process conditions. Applications of these compounds are limited in food and pharmaceutical products due to their quick release, low solubility, possible interactions with other ingredients, and reduced biological potential. Encapsulation in suitable carrier systems could protect their bioactivity and retain sensorial properties of products during processing and storage. Starch is a natural polysaccharide, and its physicochemical properties offer an excellent carrier system for various bioactive compounds. In this review, comprehensive discussions have been provided on the different fabrication techniques of starch-based micro, nano-carrier systems and their applications for various bioactive compounds have been discussed also. Various techniques including nano-spray drying, electrospinning, extrusion, acid hydrolysis, nanoemulsification, nanoprecipitation, microfluidization, ultrasonication, and gamma-irradiation have been employed to fabricate micro and nanocarrier systems from a starch biopolymer. Starch-based nanostructures are emerging as a novel and promising nano-vehicles for delivering bioactive compounds.</p></div>\",\"PeriodicalId\":565,\"journal\":{\"name\":\"Food Engineering Reviews\",\"volume\":\"14 2\",\"pages\":\"271 - 291\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2022-04-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s12393-022-09311-5.pdf\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Food Engineering Reviews\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12393-022-09311-5\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Engineering Reviews","FirstCategoryId":"97","ListUrlMain":"https://link.springer.com/article/10.1007/s12393-022-09311-5","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Recent Developments in Starch-Based Delivery Systems of Bioactive Compounds: Formulations and Applications
Bioactive compounds exhibit numerous health benefits; however, they are highly sensitive to degradation under various process conditions. Applications of these compounds are limited in food and pharmaceutical products due to their quick release, low solubility, possible interactions with other ingredients, and reduced biological potential. Encapsulation in suitable carrier systems could protect their bioactivity and retain sensorial properties of products during processing and storage. Starch is a natural polysaccharide, and its physicochemical properties offer an excellent carrier system for various bioactive compounds. In this review, comprehensive discussions have been provided on the different fabrication techniques of starch-based micro, nano-carrier systems and their applications for various bioactive compounds have been discussed also. Various techniques including nano-spray drying, electrospinning, extrusion, acid hydrolysis, nanoemulsification, nanoprecipitation, microfluidization, ultrasonication, and gamma-irradiation have been employed to fabricate micro and nanocarrier systems from a starch biopolymer. Starch-based nanostructures are emerging as a novel and promising nano-vehicles for delivering bioactive compounds.
期刊介绍:
Food Engineering Reviews publishes articles encompassing all engineering aspects of today’s scientific food research. The journal focuses on both classic and modern food engineering topics, exploring essential factors such as the health, nutritional, and environmental aspects of food processing. Trends that will drive the discipline over time, from the lab to industrial implementation, are identified and discussed. The scope of topics addressed is broad, including transport phenomena in food processing; food process engineering; physical properties of foods; food nano-science and nano-engineering; food equipment design; food plant design; modeling food processes; microbial inactivation kinetics; preservation technologies; engineering aspects of food packaging; shelf-life, storage and distribution of foods; instrumentation, control and automation in food processing; food engineering, health and nutrition; energy and economic considerations in food engineering; sustainability; and food engineering education.