均匀和梯度掺杂氮化硼纳米片的P(VDF‐TrFE‐CTFE)基复合电介质的储能性能

IF 3.8 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Yanan Shang, Yu Feng, Changming Li, Changhai Zhang, Tiandong Zhang, Yongquan Zhang, Yue Zhang, Chunhui Song, Qingguo Chi
{"title":"均匀和梯度掺杂氮化硼纳米片的P(VDF‐TrFE‐CTFE)基复合电介质的储能性能","authors":"Yanan Shang,&nbsp;Yu Feng,&nbsp;Changming Li,&nbsp;Changhai Zhang,&nbsp;Tiandong Zhang,&nbsp;Yongquan Zhang,&nbsp;Yue Zhang,&nbsp;Chunhui Song,&nbsp;Qingguo Chi","doi":"10.1049/nde2.12024","DOIUrl":null,"url":null,"abstract":"<p>Dielectric capacitors play an important role in advanced electronic and power systems such as portable electronic devices, hybrid electric vehicles and electronic weapon systems, and the improvement of energy storage density will have a positive effect on reducing the volume and weight of equipment. Here, a series of single-layer dielectrics with boron nitride nanosheets (BNNSs) uniformly dispersed and multilayer dielectrics with BNNSs showing a positive gradient distribution (PGD) and inverse gradient distribution (IGD) in the poly(vinylidene fluoride-trifluoroethylene-chlorotrifluoroethylene) (P[VDF-TrFE-CTFE]) matrix were prepared by high-speed electrospinning and hot press technology. It is found that the best performance is observed inthe lowest interlayer gradient component in both PGD and IGD composite dielectrics. However, the performance of PGD is better than that of IGD, and the 3-5-3 multilayer dielectric in the positive gradient structure has the best electrical performance. Its maximum energy storage density of the 3-5-3 composite dielectrics is 12.93 J/cm<sup>3</sup> at the applied electric field of 380 kV/mm. The above research results show that the gradient structure design plays an important role in optimising the breakdown strength and energy storage characteristics of composite dielectrics.</p>","PeriodicalId":36855,"journal":{"name":"IET Nanodielectrics","volume":"5 1","pages":"50-61"},"PeriodicalIF":3.8000,"publicationDate":"2021-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/nde2.12024","citationCount":"11","resultStr":"{\"title\":\"Energy storage properties of P(VDF-TrFE-CTFE)-based composite dielectrics with uniform and gradient-doped boron nitride nanosheets\",\"authors\":\"Yanan Shang,&nbsp;Yu Feng,&nbsp;Changming Li,&nbsp;Changhai Zhang,&nbsp;Tiandong Zhang,&nbsp;Yongquan Zhang,&nbsp;Yue Zhang,&nbsp;Chunhui Song,&nbsp;Qingguo Chi\",\"doi\":\"10.1049/nde2.12024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Dielectric capacitors play an important role in advanced electronic and power systems such as portable electronic devices, hybrid electric vehicles and electronic weapon systems, and the improvement of energy storage density will have a positive effect on reducing the volume and weight of equipment. Here, a series of single-layer dielectrics with boron nitride nanosheets (BNNSs) uniformly dispersed and multilayer dielectrics with BNNSs showing a positive gradient distribution (PGD) and inverse gradient distribution (IGD) in the poly(vinylidene fluoride-trifluoroethylene-chlorotrifluoroethylene) (P[VDF-TrFE-CTFE]) matrix were prepared by high-speed electrospinning and hot press technology. It is found that the best performance is observed inthe lowest interlayer gradient component in both PGD and IGD composite dielectrics. However, the performance of PGD is better than that of IGD, and the 3-5-3 multilayer dielectric in the positive gradient structure has the best electrical performance. Its maximum energy storage density of the 3-5-3 composite dielectrics is 12.93 J/cm<sup>3</sup> at the applied electric field of 380 kV/mm. The above research results show that the gradient structure design plays an important role in optimising the breakdown strength and energy storage characteristics of composite dielectrics.</p>\",\"PeriodicalId\":36855,\"journal\":{\"name\":\"IET Nanodielectrics\",\"volume\":\"5 1\",\"pages\":\"50-61\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2021-05-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/nde2.12024\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Nanodielectrics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/nde2.12024\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Nanodielectrics","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/nde2.12024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 11

摘要

介质电容器在便携式电子设备、混合动力汽车和电子武器系统等先进的电子和电力系统中发挥着重要作用,储能密度的提高将对减少设备的体积和重量产生积极影响。在这里通过高速静电纺丝和热处理制备了一系列具有均匀分散的氮化硼纳米片(BNNSs)的单层电介质和具有BNNSs的多层电介质,BNNSs在聚偏二氟乙烯-三氟乙烯-氯三氟乙烯(P[VDF‐TrFE‐CTFE])基体中显示出正梯度分布(PGD)和反梯度分布(IGD)印刷技术。研究发现,在PGD和IGD复合电介质中,在最低的层间梯度分量中观察到最佳性能。然而,PGD的性能优于IGD,并且正梯度结构中的3‐5‐3多层电介质具有最佳的电学性能。在380 kV/mm的外加电场下,3‐5‐3复合电介质的最大储能密度为12.93 J/cm3。上述研究结果表明,梯度结构设计在优化复合电介质的击穿强度和储能特性方面发挥着重要作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Energy storage properties of P(VDF-TrFE-CTFE)-based composite dielectrics with uniform and gradient-doped boron nitride nanosheets

Energy storage properties of P(VDF-TrFE-CTFE)-based composite dielectrics with uniform and gradient-doped boron nitride nanosheets

Dielectric capacitors play an important role in advanced electronic and power systems such as portable electronic devices, hybrid electric vehicles and electronic weapon systems, and the improvement of energy storage density will have a positive effect on reducing the volume and weight of equipment. Here, a series of single-layer dielectrics with boron nitride nanosheets (BNNSs) uniformly dispersed and multilayer dielectrics with BNNSs showing a positive gradient distribution (PGD) and inverse gradient distribution (IGD) in the poly(vinylidene fluoride-trifluoroethylene-chlorotrifluoroethylene) (P[VDF-TrFE-CTFE]) matrix were prepared by high-speed electrospinning and hot press technology. It is found that the best performance is observed inthe lowest interlayer gradient component in both PGD and IGD composite dielectrics. However, the performance of PGD is better than that of IGD, and the 3-5-3 multilayer dielectric in the positive gradient structure has the best electrical performance. Its maximum energy storage density of the 3-5-3 composite dielectrics is 12.93 J/cm3 at the applied electric field of 380 kV/mm. The above research results show that the gradient structure design plays an important role in optimising the breakdown strength and energy storage characteristics of composite dielectrics.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IET Nanodielectrics
IET Nanodielectrics Materials Science-Materials Chemistry
CiteScore
5.60
自引率
3.70%
发文量
7
审稿时长
21 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信