{"title":"论速度在计算技术和生物信息传递中的作用","authors":"János Végh, Ádám József Berki","doi":"10.1007/s10441-022-09450-6","DOIUrl":null,"url":null,"abstract":"<div><p>In all kinds of implementations of computing, whether technological or biological, some material carrier for the information exists, so in real-world implementations, the propagation speed of information cannot exceed the speed of its carrier. Because of this limitation, one must also consider the transfer time between computing units for any implementation. We need a different mathematical method to consider this limitation: classic mathematics can only describe infinitely fast and small computing system implementations. The difference between mathematical handling methods leads to different descriptions of the computing features of the systems. The proposed handling also explains why biological implementations can have lifelong learning and technological ones cannot. Our conclusion about learning matches published experimental evidence, both in biological and technological computing.</p></div>","PeriodicalId":7057,"journal":{"name":"Acta Biotheoretica","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2022-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10441-022-09450-6.pdf","citationCount":"1","resultStr":"{\"title\":\"On the Role of Speed in Technological and Biological Information Transfer for Computations\",\"authors\":\"János Végh, Ádám József Berki\",\"doi\":\"10.1007/s10441-022-09450-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In all kinds of implementations of computing, whether technological or biological, some material carrier for the information exists, so in real-world implementations, the propagation speed of information cannot exceed the speed of its carrier. Because of this limitation, one must also consider the transfer time between computing units for any implementation. We need a different mathematical method to consider this limitation: classic mathematics can only describe infinitely fast and small computing system implementations. The difference between mathematical handling methods leads to different descriptions of the computing features of the systems. The proposed handling also explains why biological implementations can have lifelong learning and technological ones cannot. Our conclusion about learning matches published experimental evidence, both in biological and technological computing.</p></div>\",\"PeriodicalId\":7057,\"journal\":{\"name\":\"Acta Biotheoretica\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2022-10-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10441-022-09450-6.pdf\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Biotheoretica\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10441-022-09450-6\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Biotheoretica","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1007/s10441-022-09450-6","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
On the Role of Speed in Technological and Biological Information Transfer for Computations
In all kinds of implementations of computing, whether technological or biological, some material carrier for the information exists, so in real-world implementations, the propagation speed of information cannot exceed the speed of its carrier. Because of this limitation, one must also consider the transfer time between computing units for any implementation. We need a different mathematical method to consider this limitation: classic mathematics can only describe infinitely fast and small computing system implementations. The difference between mathematical handling methods leads to different descriptions of the computing features of the systems. The proposed handling also explains why biological implementations can have lifelong learning and technological ones cannot. Our conclusion about learning matches published experimental evidence, both in biological and technological computing.
期刊介绍:
Acta Biotheoretica is devoted to the promotion of theoretical biology, encompassing mathematical biology and the philosophy of biology, paying special attention to the methodology of formation of biological theory.
Papers on all kind of biological theories are welcome. Interesting subjects include philosophy of biology, biomathematics, computational biology, genetics, ecology and morphology. The process of theory formation can be presented in verbal or mathematical form. Moreover, purely methodological papers can be devoted to the historical origins of the philosophy underlying biological theories and concepts.
Papers should contain clear statements of biological assumptions, and where applicable, a justification of their translation into mathematical form and a detailed discussion of the mathematical treatment. The connection to empirical data should be clarified.
Acta Biotheoretica also welcomes critical book reviews, short comments on previous papers and short notes directing attention to interesting new theoretical ideas.