用于伤口敷料的3D打印白蛋白-海藻酸盐泡沫的开发

IF 2.3 4区 工程技术 Q3 ENGINEERING, MANUFACTURING
3D Printing and Additive Manufacturing Pub Date : 2024-06-18 eCollection Date: 2024-06-01 DOI:10.1089/3dp.2022.0241
Elias Madadian, Emad Naseri, Ryan Legault, Ali Ahmadi
{"title":"用于伤口敷料的3D打印白蛋白-海藻酸盐泡沫的开发","authors":"Elias Madadian, Emad Naseri, Ryan Legault, Ali Ahmadi","doi":"10.1089/3dp.2022.0241","DOIUrl":null,"url":null,"abstract":"<p><p>In this article, a method to develop 3D printable hybrid sodium alginate and albumin foam, crosslinked with calcium chloride mist is introduced. Using this method, highly porous structures are produced without the need of further postprocessing (such as freeze drying). The proposed method is particularly beneficial in the development of wound dressing as the printed foams show excellent lift-off and water absorption properties. Compared with methods that use liquid crosslinker, the use of mist prevents the leaching of biocompounds into the liquid crosslinker. 3D printing technique was chosen to provide more versatility over the wound dressing geometry. Calcium chloride and rhodamine B were used as the crosslinking material and the model drug, respectively. Various biomaterial inks were prepared by different concentrations of sodium alginate and albumin, and the fabricated scaffolds were crosslinked in mist, liquid, or kept without crosslinking. The effects of biomaterial composition and the crosslinking density on the wound dressing properties were assessed through printability studies. The mist-crosslinked biomaterial ink composed of 1% (w/v) sodium alginate and 12% (w/v) albumin showed the superior printability. The fabricated scaffolds were also characterized through porosity, mechanical, degradation, and drug release tests. The mist-crosslinked scaffolds showed superior mechanical properties and provided relatively prolonged drug release.</p>","PeriodicalId":54341,"journal":{"name":"3D Printing and Additive Manufacturing","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11442183/pdf/","citationCount":"0","resultStr":"{\"title\":\"Development of 3D-Printable Albumin-Alginate Foam for Wound Dressing Applications.\",\"authors\":\"Elias Madadian, Emad Naseri, Ryan Legault, Ali Ahmadi\",\"doi\":\"10.1089/3dp.2022.0241\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this article, a method to develop 3D printable hybrid sodium alginate and albumin foam, crosslinked with calcium chloride mist is introduced. Using this method, highly porous structures are produced without the need of further postprocessing (such as freeze drying). The proposed method is particularly beneficial in the development of wound dressing as the printed foams show excellent lift-off and water absorption properties. Compared with methods that use liquid crosslinker, the use of mist prevents the leaching of biocompounds into the liquid crosslinker. 3D printing technique was chosen to provide more versatility over the wound dressing geometry. Calcium chloride and rhodamine B were used as the crosslinking material and the model drug, respectively. Various biomaterial inks were prepared by different concentrations of sodium alginate and albumin, and the fabricated scaffolds were crosslinked in mist, liquid, or kept without crosslinking. The effects of biomaterial composition and the crosslinking density on the wound dressing properties were assessed through printability studies. The mist-crosslinked biomaterial ink composed of 1% (w/v) sodium alginate and 12% (w/v) albumin showed the superior printability. The fabricated scaffolds were also characterized through porosity, mechanical, degradation, and drug release tests. The mist-crosslinked scaffolds showed superior mechanical properties and provided relatively prolonged drug release.</p>\",\"PeriodicalId\":54341,\"journal\":{\"name\":\"3D Printing and Additive Manufacturing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11442183/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"3D Printing and Additive Manufacturing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1089/3dp.2022.0241\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/6/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"3D Printing and Additive Manufacturing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1089/3dp.2022.0241","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了一种用氯化钙雾交联开发可三维打印的海藻酸钠和白蛋白混合泡沫的方法。利用这种方法,无需进一步的后处理(如冷冻干燥),就能制作出高密度多孔结构。由于印制的泡沫具有出色的掀起和吸水特性,因此该方法尤其有利于伤口敷料的开发。与使用液态交联剂的方法相比,使用雾状交联剂可防止生物化合物浸入液态交联剂中。选择三维打印技术是为了使伤口敷料的几何形状更具多样性。氯化钙和罗丹明 B 分别用作交联材料和模型药物。用不同浓度的海藻酸钠和白蛋白制备了各种生物材料墨水,制成的支架在雾态、液态或不交联的情况下交联。通过可印刷性研究评估了生物材料成分和交联密度对伤口敷料性能的影响。由 1%(w/v)海藻酸钠和 12%(w/v)白蛋白组成的雾状交联生物材料墨水显示出更优越的可印刷性。此外,还通过孔隙率、机械性能、降解和药物释放测试对制作的支架进行了表征。雾状交联支架显示出优异的机械性能,并提供了相对较长的药物释放时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Development of 3D-Printable Albumin-Alginate Foam for Wound Dressing Applications.

In this article, a method to develop 3D printable hybrid sodium alginate and albumin foam, crosslinked with calcium chloride mist is introduced. Using this method, highly porous structures are produced without the need of further postprocessing (such as freeze drying). The proposed method is particularly beneficial in the development of wound dressing as the printed foams show excellent lift-off and water absorption properties. Compared with methods that use liquid crosslinker, the use of mist prevents the leaching of biocompounds into the liquid crosslinker. 3D printing technique was chosen to provide more versatility over the wound dressing geometry. Calcium chloride and rhodamine B were used as the crosslinking material and the model drug, respectively. Various biomaterial inks were prepared by different concentrations of sodium alginate and albumin, and the fabricated scaffolds were crosslinked in mist, liquid, or kept without crosslinking. The effects of biomaterial composition and the crosslinking density on the wound dressing properties were assessed through printability studies. The mist-crosslinked biomaterial ink composed of 1% (w/v) sodium alginate and 12% (w/v) albumin showed the superior printability. The fabricated scaffolds were also characterized through porosity, mechanical, degradation, and drug release tests. The mist-crosslinked scaffolds showed superior mechanical properties and provided relatively prolonged drug release.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
3D Printing and Additive Manufacturing
3D Printing and Additive Manufacturing Materials Science-Materials Science (miscellaneous)
CiteScore
6.00
自引率
6.50%
发文量
126
期刊介绍: 3D Printing and Additive Manufacturing is a peer-reviewed journal that provides a forum for world-class research in additive manufacturing and related technologies. The Journal explores emerging challenges and opportunities ranging from new developments of processes and materials, to new simulation and design tools, and informative applications and case studies. Novel applications in new areas, such as medicine, education, bio-printing, food printing, art and architecture, are also encouraged. The Journal addresses the important questions surrounding this powerful and growing field, including issues in policy and law, intellectual property, data standards, safety and liability, environmental impact, social, economic, and humanitarian implications, and emerging business models at the industrial and consumer scales.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信