一种新的带直线的加速黏度正向倒向算法求解一些凸最小化问题及其在数据分类中的应用

IF 1.4 4区 数学 Q1 MATHEMATICS
Dawan Chumpungam, Panitarn Sarnmeta, S. Suantai
{"title":"一种新的带直线的加速黏度正向倒向算法求解一些凸最小化问题及其在数据分类中的应用","authors":"Dawan Chumpungam, Panitarn Sarnmeta, S. Suantai","doi":"10.37193/cjm.2023.01.08","DOIUrl":null,"url":null,"abstract":"\" In this paper, we focus on solving convex minimization problem in the form of a summation of two convex functions in which one of them is Frec\\'{e}t differentiable. In order to solve this problem, we introduce a new accelerated viscosity forward-backward algorithm with a new linesearch technique. The proposed algorithm converges strongly to a solution of the problem without assuming that a gradient of the objective function is $L$-Lipschitz continuous. As applications, we apply the proposed algorithm to classification problems and compare its performance with other algorithms mentioned in the literature. \"","PeriodicalId":50711,"journal":{"name":"Carpathian Journal of Mathematics","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2022-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A New Accelerated Viscosity Forward-backward Algorithm with a Linesearch for Some Convex Minimization Problems and its Applications to Data Classification\",\"authors\":\"Dawan Chumpungam, Panitarn Sarnmeta, S. Suantai\",\"doi\":\"10.37193/cjm.2023.01.08\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\\" In this paper, we focus on solving convex minimization problem in the form of a summation of two convex functions in which one of them is Frec\\\\'{e}t differentiable. In order to solve this problem, we introduce a new accelerated viscosity forward-backward algorithm with a new linesearch technique. The proposed algorithm converges strongly to a solution of the problem without assuming that a gradient of the objective function is $L$-Lipschitz continuous. As applications, we apply the proposed algorithm to classification problems and compare its performance with other algorithms mentioned in the literature. \\\"\",\"PeriodicalId\":50711,\"journal\":{\"name\":\"Carpathian Journal of Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2022-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Carpathian Journal of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.37193/cjm.2023.01.08\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carpathian Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.37193/cjm.2023.01.08","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们着重于用两个凸函数的和的形式来解决凸极小化问题,其中一个凸函数是Frec\ {e}t可微的。为了解决这一问题,我们引入了一种新的加速黏度正反向算法,该算法采用了新的直线研究技术。该算法在不假设目标函数的梯度为L -Lipschitz连续的情况下强收敛于问题的解。作为应用,我们将提出的算法应用于分类问题,并将其性能与文献中提到的其他算法进行比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A New Accelerated Viscosity Forward-backward Algorithm with a Linesearch for Some Convex Minimization Problems and its Applications to Data Classification
" In this paper, we focus on solving convex minimization problem in the form of a summation of two convex functions in which one of them is Frec\'{e}t differentiable. In order to solve this problem, we introduce a new accelerated viscosity forward-backward algorithm with a new linesearch technique. The proposed algorithm converges strongly to a solution of the problem without assuming that a gradient of the objective function is $L$-Lipschitz continuous. As applications, we apply the proposed algorithm to classification problems and compare its performance with other algorithms mentioned in the literature. "
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Carpathian Journal of Mathematics
Carpathian Journal of Mathematics MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
2.40
自引率
7.10%
发文量
21
审稿时长
>12 weeks
期刊介绍: Carpathian Journal of Mathematics publishes high quality original research papers and survey articles in all areas of pure and applied mathematics. It will also occasionally publish, as special issues, proceedings of international conferences, generally (co)-organized by the Department of Mathematics and Computer Science, North University Center at Baia Mare. There is no fee for the published papers but the journal offers an Open Access Option to interested contributors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信