实现端到端增材制造过程现场监控的概念框架

Q3 Engineering
S. Karadgi, Prabhakar M Bhovi, A. Patil, R. Keshavamurthy, Venkateswarlu K, Terence G. Langdon
{"title":"实现端到端增材制造过程现场监控的概念框架","authors":"S. Karadgi, Prabhakar M Bhovi, A. Patil, R. Keshavamurthy, Venkateswarlu K, Terence G. Langdon","doi":"10.2174/1876402915666230405132640","DOIUrl":null,"url":null,"abstract":"\n\nAdditive Manufacturing (AM) is considered one of the key technologies for realizing Industry 4.0. There are numerous stages in the end-to-end AM process, including component design, material design, build, and so on. An enormous amount of data is generated along the end-to-end AM process that can be acquired from the 3D printer in real-time, micro-characterization studies, and process plan details, among others. For instance, these data can be employed to predict the printed components’ quality and, at the same time, proactively adapt the 3D printer parameters to achieve better quality. This end-to-end AM process can be mapped onto the digital thread. The current article elaborates on a conceptual framework to acquire the data from various sources associated with the end-to-end AM process and realize monitoring and control of the end-to-end AM process, leading to an intelligent AM process.\n","PeriodicalId":18543,"journal":{"name":"Micro and Nanosystems","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Conceptual Framework Towards the Realization of In Situ Monitoring and Control of End-to-End Additive Manufacturing Process\",\"authors\":\"S. Karadgi, Prabhakar M Bhovi, A. Patil, R. Keshavamurthy, Venkateswarlu K, Terence G. Langdon\",\"doi\":\"10.2174/1876402915666230405132640\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n\\nAdditive Manufacturing (AM) is considered one of the key technologies for realizing Industry 4.0. There are numerous stages in the end-to-end AM process, including component design, material design, build, and so on. An enormous amount of data is generated along the end-to-end AM process that can be acquired from the 3D printer in real-time, micro-characterization studies, and process plan details, among others. For instance, these data can be employed to predict the printed components’ quality and, at the same time, proactively adapt the 3D printer parameters to achieve better quality. This end-to-end AM process can be mapped onto the digital thread. The current article elaborates on a conceptual framework to acquire the data from various sources associated with the end-to-end AM process and realize monitoring and control of the end-to-end AM process, leading to an intelligent AM process.\\n\",\"PeriodicalId\":18543,\"journal\":{\"name\":\"Micro and Nanosystems\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Micro and Nanosystems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2174/1876402915666230405132640\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micro and Nanosystems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/1876402915666230405132640","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

增材制造被认为是实现工业4.0的关键技术之一。在端到端AM过程中有许多阶段,包括组件设计、材料设计、构建等等。在端到端增材制造过程中会产生大量数据,这些数据可以从3D打印机实时获取,包括微特性研究和工艺计划细节等。例如,这些数据可以用来预测打印部件的质量,同时,主动调整3D打印机参数,以达到更好的质量。这个端到端AM过程可以映射到数字线程上。本文阐述了一个概念框架,从与端到端AM过程相关的各种来源获取数据,并实现对端到端AM过程的监控,从而实现智能AM过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Conceptual Framework Towards the Realization of In Situ Monitoring and Control of End-to-End Additive Manufacturing Process
Additive Manufacturing (AM) is considered one of the key technologies for realizing Industry 4.0. There are numerous stages in the end-to-end AM process, including component design, material design, build, and so on. An enormous amount of data is generated along the end-to-end AM process that can be acquired from the 3D printer in real-time, micro-characterization studies, and process plan details, among others. For instance, these data can be employed to predict the printed components’ quality and, at the same time, proactively adapt the 3D printer parameters to achieve better quality. This end-to-end AM process can be mapped onto the digital thread. The current article elaborates on a conceptual framework to acquire the data from various sources associated with the end-to-end AM process and realize monitoring and control of the end-to-end AM process, leading to an intelligent AM process.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Micro and Nanosystems
Micro and Nanosystems Engineering-Building and Construction
CiteScore
1.60
自引率
0.00%
发文量
50
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信