D. Panda, M. Kumar, Suraj K. Behera, A. Satapathy, S. Sarangi
{"title":"驱动室放料过程对流体驱动Gifford-McMahon制冷机非线性驱油动力学和热力学过程的影响","authors":"D. Panda, M. Kumar, Suraj K. Behera, A. Satapathy, S. Sarangi","doi":"10.1515/jnet-2022-0073","DOIUrl":null,"url":null,"abstract":"Abstract Continuous effort is made on Gifford-McMahon cryocoolers (GMC) to amplify its refrigeration power, so they can be used to cool the cryopumps, high Tc magnets and development of efficient small-scale hydrogen liquefiers, etc. The fluidic-driven GMC is considered to be more reliable and prominent candidate than the mechanically-driven GMC due to its structural simplicity and reliability. Nonetheless, cooling mechanism of the fluidic-driven GMC is complicated, as the displacer motion inside the displacer cylinder is simultaneously controlled by the pressure difference between drive chamber and compression/expansion chamber. Different paths of displacer can be traced inside the displacer cylinder for different drive-chamber discharging process, hence, pressure–volume power of compression and expansion chambers, and refrigeration power changes. A theoretical study is conducted in present paper to visualize the influence of drive-chamber discharging process on the thermodynamic characteristics of fluidic-driven GMC for the first time. Thermodynamic cycles are drawn at the expansion chamber of the fluidic-driven GMC for different values of drive-chamber discharging process for two types of valve timing arrangements. Energy and work loss behaviors in different components of the GMC are also analysed. Adequate experimental investigations have also been carried out on a fluidic-driven displacer type GMC to verify the simulation results.","PeriodicalId":16428,"journal":{"name":"Journal of Non-Equilibrium Thermodynamics","volume":"48 1","pages":"1 - 23"},"PeriodicalIF":4.3000,"publicationDate":"2022-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Influence of drive chamber discharging process on non-linear displacer dynamics and thermodynamic processes of a fluidic-driven Gifford-McMahon cryocooler\",\"authors\":\"D. Panda, M. Kumar, Suraj K. Behera, A. Satapathy, S. Sarangi\",\"doi\":\"10.1515/jnet-2022-0073\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Continuous effort is made on Gifford-McMahon cryocoolers (GMC) to amplify its refrigeration power, so they can be used to cool the cryopumps, high Tc magnets and development of efficient small-scale hydrogen liquefiers, etc. The fluidic-driven GMC is considered to be more reliable and prominent candidate than the mechanically-driven GMC due to its structural simplicity and reliability. Nonetheless, cooling mechanism of the fluidic-driven GMC is complicated, as the displacer motion inside the displacer cylinder is simultaneously controlled by the pressure difference between drive chamber and compression/expansion chamber. Different paths of displacer can be traced inside the displacer cylinder for different drive-chamber discharging process, hence, pressure–volume power of compression and expansion chambers, and refrigeration power changes. A theoretical study is conducted in present paper to visualize the influence of drive-chamber discharging process on the thermodynamic characteristics of fluidic-driven GMC for the first time. Thermodynamic cycles are drawn at the expansion chamber of the fluidic-driven GMC for different values of drive-chamber discharging process for two types of valve timing arrangements. Energy and work loss behaviors in different components of the GMC are also analysed. Adequate experimental investigations have also been carried out on a fluidic-driven displacer type GMC to verify the simulation results.\",\"PeriodicalId\":16428,\"journal\":{\"name\":\"Journal of Non-Equilibrium Thermodynamics\",\"volume\":\"48 1\",\"pages\":\"1 - 23\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2022-11-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Non-Equilibrium Thermodynamics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1515/jnet-2022-0073\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Non-Equilibrium Thermodynamics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1515/jnet-2022-0073","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
Influence of drive chamber discharging process on non-linear displacer dynamics and thermodynamic processes of a fluidic-driven Gifford-McMahon cryocooler
Abstract Continuous effort is made on Gifford-McMahon cryocoolers (GMC) to amplify its refrigeration power, so they can be used to cool the cryopumps, high Tc magnets and development of efficient small-scale hydrogen liquefiers, etc. The fluidic-driven GMC is considered to be more reliable and prominent candidate than the mechanically-driven GMC due to its structural simplicity and reliability. Nonetheless, cooling mechanism of the fluidic-driven GMC is complicated, as the displacer motion inside the displacer cylinder is simultaneously controlled by the pressure difference between drive chamber and compression/expansion chamber. Different paths of displacer can be traced inside the displacer cylinder for different drive-chamber discharging process, hence, pressure–volume power of compression and expansion chambers, and refrigeration power changes. A theoretical study is conducted in present paper to visualize the influence of drive-chamber discharging process on the thermodynamic characteristics of fluidic-driven GMC for the first time. Thermodynamic cycles are drawn at the expansion chamber of the fluidic-driven GMC for different values of drive-chamber discharging process for two types of valve timing arrangements. Energy and work loss behaviors in different components of the GMC are also analysed. Adequate experimental investigations have also been carried out on a fluidic-driven displacer type GMC to verify the simulation results.
期刊介绍:
The Journal of Non-Equilibrium Thermodynamics serves as an international publication organ for new ideas, insights and results on non-equilibrium phenomena in science, engineering and related natural systems. The central aim of the journal is to provide a bridge between science and engineering and to promote scientific exchange on a) newly observed non-equilibrium phenomena, b) analytic or numeric modeling for their interpretation, c) vanguard methods to describe non-equilibrium phenomena.
Contributions should – among others – present novel approaches to analyzing, modeling and optimizing processes of engineering relevance such as transport processes of mass, momentum and energy, separation of fluid phases, reproduction of living cells, or energy conversion. The journal is particularly interested in contributions which add to the basic understanding of non-equilibrium phenomena in science and engineering, with systems of interest ranging from the macro- to the nano-level.
The Journal of Non-Equilibrium Thermodynamics has recently expanded its scope to place new emphasis on theoretical and experimental investigations of non-equilibrium phenomena in thermophysical, chemical, biochemical and abstract model systems of engineering relevance. We are therefore pleased to invite submissions which present newly observed non-equilibrium phenomena, analytic or fuzzy models for their interpretation, or new methods for their description.