{"title":"基于微调的深度学习及其在同类开源软件可靠性评估中的应用","authors":"Y. Tamura, Shigeru Yamada","doi":"10.33889/ijmems.2023.8.4.036","DOIUrl":null,"url":null,"abstract":"Recently, many open-source products have been used under the situations of general software development, because the cost saving and standardization. Therefore, many open-source products are gathering attention from many software development companies. Then, the reliability/quality of open-source products becomes very important factor for the software development. This paper focuses on the reliability/quality evaluation of open-source products. In particular, the large quantity fault data sets recorded on Bugzilla of open-source products is used in many open-source development projects. Then, the large amount of data sets of software faults is recorded on the Bugzilla. This paper proposes the reliability/quality evaluation approach based on the deep machine learning by using the large quantity fault data on the Bugzilla. Moreover, the large quantity fault data sets are analyzed by the deep machine learning based on the fine-tuning.","PeriodicalId":44185,"journal":{"name":"International Journal of Mathematical Engineering and Management Sciences","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep Learning Based on Fine Tuning with Application to the Reliability Assessment of Similar Open Source Software\",\"authors\":\"Y. Tamura, Shigeru Yamada\",\"doi\":\"10.33889/ijmems.2023.8.4.036\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently, many open-source products have been used under the situations of general software development, because the cost saving and standardization. Therefore, many open-source products are gathering attention from many software development companies. Then, the reliability/quality of open-source products becomes very important factor for the software development. This paper focuses on the reliability/quality evaluation of open-source products. In particular, the large quantity fault data sets recorded on Bugzilla of open-source products is used in many open-source development projects. Then, the large amount of data sets of software faults is recorded on the Bugzilla. This paper proposes the reliability/quality evaluation approach based on the deep machine learning by using the large quantity fault data on the Bugzilla. Moreover, the large quantity fault data sets are analyzed by the deep machine learning based on the fine-tuning.\",\"PeriodicalId\":44185,\"journal\":{\"name\":\"International Journal of Mathematical Engineering and Management Sciences\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Mathematical Engineering and Management Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33889/ijmems.2023.8.4.036\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mathematical Engineering and Management Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33889/ijmems.2023.8.4.036","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
Deep Learning Based on Fine Tuning with Application to the Reliability Assessment of Similar Open Source Software
Recently, many open-source products have been used under the situations of general software development, because the cost saving and standardization. Therefore, many open-source products are gathering attention from many software development companies. Then, the reliability/quality of open-source products becomes very important factor for the software development. This paper focuses on the reliability/quality evaluation of open-source products. In particular, the large quantity fault data sets recorded on Bugzilla of open-source products is used in many open-source development projects. Then, the large amount of data sets of software faults is recorded on the Bugzilla. This paper proposes the reliability/quality evaluation approach based on the deep machine learning by using the large quantity fault data on the Bugzilla. Moreover, the large quantity fault data sets are analyzed by the deep machine learning based on the fine-tuning.
期刊介绍:
IJMEMS is a peer reviewed international journal aiming on both the theoretical and practical aspects of mathematical, engineering and management sciences. The original, not-previously published, research manuscripts on topics such as the following (but not limited to) will be considered for publication: *Mathematical Sciences- applied mathematics and allied fields, operations research, mathematical statistics. *Engineering Sciences- computer science engineering, mechanical engineering, information technology engineering, civil engineering, aeronautical engineering, industrial engineering, systems engineering, reliability engineering, production engineering. *Management Sciences- engineering management, risk management, business models, supply chain management.