{"title":"碳、碳化物、氧化物、铁氧体和硫化物的电磁波吸收性能:综述与展望","authors":"Jiaolong Liu, Limin Zhang, Hongjing Wu","doi":"10.1088/1361-6463/abe26d","DOIUrl":null,"url":null,"abstract":"The development of electromagnetic wave-absorbing materials (EMWAMs) offers a promising way to address the ever-increasing issue of electromagnetic pollution. Up to now, significant efforts have been made to explore superior EMWAMs featuring strong absorption intensity, broad bandwidth, low density, and small thicknesses as well as those with exceptional performance. Therefore, in this paper, we offer a a comprehensive review summarizing the recent inspiring advancements in various EMWAMs, including those based on carbon, carbides, oxides, ferrites and sulfides. We begin by presenting diverse lossy materials, such as dielectric loss materials, magnetic loss materials and dielectric/magnetic loss materials. In parallel, we discuss the current difficulties with the materials themselves and the corresponding composite strategies for incorporating other dielectric or magnetic components. Finally, we outline the primary problems and bottlenecks, and more importantly, the prospective research directions of these materials. Overall, this work will present a brief but systematic overview of up-to-date progress in the EMW attenuation abilities of various EMWAMs.","PeriodicalId":16789,"journal":{"name":"Journal of Physics D: Applied Physics","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2021-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"61","resultStr":"{\"title\":\"Electromagnetic wave-absorbing performance of carbons, carbides, oxides, ferrites and sulfides: review and perspective\",\"authors\":\"Jiaolong Liu, Limin Zhang, Hongjing Wu\",\"doi\":\"10.1088/1361-6463/abe26d\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The development of electromagnetic wave-absorbing materials (EMWAMs) offers a promising way to address the ever-increasing issue of electromagnetic pollution. Up to now, significant efforts have been made to explore superior EMWAMs featuring strong absorption intensity, broad bandwidth, low density, and small thicknesses as well as those with exceptional performance. Therefore, in this paper, we offer a a comprehensive review summarizing the recent inspiring advancements in various EMWAMs, including those based on carbon, carbides, oxides, ferrites and sulfides. We begin by presenting diverse lossy materials, such as dielectric loss materials, magnetic loss materials and dielectric/magnetic loss materials. In parallel, we discuss the current difficulties with the materials themselves and the corresponding composite strategies for incorporating other dielectric or magnetic components. Finally, we outline the primary problems and bottlenecks, and more importantly, the prospective research directions of these materials. Overall, this work will present a brief but systematic overview of up-to-date progress in the EMW attenuation abilities of various EMWAMs.\",\"PeriodicalId\":16789,\"journal\":{\"name\":\"Journal of Physics D: Applied Physics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2021-02-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"61\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physics D: Applied Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6463/abe26d\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics D: Applied Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1361-6463/abe26d","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
Electromagnetic wave-absorbing performance of carbons, carbides, oxides, ferrites and sulfides: review and perspective
The development of electromagnetic wave-absorbing materials (EMWAMs) offers a promising way to address the ever-increasing issue of electromagnetic pollution. Up to now, significant efforts have been made to explore superior EMWAMs featuring strong absorption intensity, broad bandwidth, low density, and small thicknesses as well as those with exceptional performance. Therefore, in this paper, we offer a a comprehensive review summarizing the recent inspiring advancements in various EMWAMs, including those based on carbon, carbides, oxides, ferrites and sulfides. We begin by presenting diverse lossy materials, such as dielectric loss materials, magnetic loss materials and dielectric/magnetic loss materials. In parallel, we discuss the current difficulties with the materials themselves and the corresponding composite strategies for incorporating other dielectric or magnetic components. Finally, we outline the primary problems and bottlenecks, and more importantly, the prospective research directions of these materials. Overall, this work will present a brief but systematic overview of up-to-date progress in the EMW attenuation abilities of various EMWAMs.
期刊介绍:
This journal is concerned with all aspects of applied physics research, from biophysics, magnetism, plasmas and semiconductors to the structure and properties of matter.