{"title":"沿液体填充表面的流动和液滴传输","authors":"S. Hardt, G. McHale","doi":"10.1146/annurev-fluid-030121-113156","DOIUrl":null,"url":null,"abstract":"Liquid-infused surfaces (LISs) are composite solid–liquid surfaces with remarkable features such as liquid repellency, self-healing, and the suppression of fouling. This review focuses on the fluid mechanics on LISs, that is, the interaction of surfaces with a flow field and the behavior of drops on such surfaces. LISs can be characterized by an effective slip length that is closely related to their drag reduction property, which makes them suitable for several applications, especially for turbulent flows. Drag reduction, however, is compromised by failure mechanisms such as the drainage of lubricant from surface textures. The flow field can also sculpt the lubricant layer in a coupled self-organization process. For drops, the lubricant reduces drop pinning and increases drop mobility, but also results in a wetting ridge and the associated concept of an apparent contact angle. Design of LIS wettability and topography can induce low-friction drop motion, and drops can dynamically shape the lubricant ridges and film thickness. Expected final online publication date for the Annual Review of Fluid Mechanics, Volume 54 is January 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.","PeriodicalId":50754,"journal":{"name":"Annual Review of Fluid Mechanics","volume":" ","pages":""},"PeriodicalIF":25.4000,"publicationDate":"2021-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"33","resultStr":"{\"title\":\"Flow and Drop Transport Along Liquid-Infused Surfaces\",\"authors\":\"S. Hardt, G. McHale\",\"doi\":\"10.1146/annurev-fluid-030121-113156\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Liquid-infused surfaces (LISs) are composite solid–liquid surfaces with remarkable features such as liquid repellency, self-healing, and the suppression of fouling. This review focuses on the fluid mechanics on LISs, that is, the interaction of surfaces with a flow field and the behavior of drops on such surfaces. LISs can be characterized by an effective slip length that is closely related to their drag reduction property, which makes them suitable for several applications, especially for turbulent flows. Drag reduction, however, is compromised by failure mechanisms such as the drainage of lubricant from surface textures. The flow field can also sculpt the lubricant layer in a coupled self-organization process. For drops, the lubricant reduces drop pinning and increases drop mobility, but also results in a wetting ridge and the associated concept of an apparent contact angle. Design of LIS wettability and topography can induce low-friction drop motion, and drops can dynamically shape the lubricant ridges and film thickness. Expected final online publication date for the Annual Review of Fluid Mechanics, Volume 54 is January 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.\",\"PeriodicalId\":50754,\"journal\":{\"name\":\"Annual Review of Fluid Mechanics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":25.4000,\"publicationDate\":\"2021-09-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"33\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual Review of Fluid Mechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1146/annurev-fluid-030121-113156\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Review of Fluid Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1146/annurev-fluid-030121-113156","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
Flow and Drop Transport Along Liquid-Infused Surfaces
Liquid-infused surfaces (LISs) are composite solid–liquid surfaces with remarkable features such as liquid repellency, self-healing, and the suppression of fouling. This review focuses on the fluid mechanics on LISs, that is, the interaction of surfaces with a flow field and the behavior of drops on such surfaces. LISs can be characterized by an effective slip length that is closely related to their drag reduction property, which makes them suitable for several applications, especially for turbulent flows. Drag reduction, however, is compromised by failure mechanisms such as the drainage of lubricant from surface textures. The flow field can also sculpt the lubricant layer in a coupled self-organization process. For drops, the lubricant reduces drop pinning and increases drop mobility, but also results in a wetting ridge and the associated concept of an apparent contact angle. Design of LIS wettability and topography can induce low-friction drop motion, and drops can dynamically shape the lubricant ridges and film thickness. Expected final online publication date for the Annual Review of Fluid Mechanics, Volume 54 is January 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
期刊介绍:
The Annual Review of Fluid Mechanics is a longstanding publication dating back to 1969 that explores noteworthy advancements in the field of fluid mechanics. Its comprehensive coverage includes various topics such as the historical and foundational aspects of fluid mechanics, non-newtonian fluids and rheology, both incompressible and compressible fluids, plasma flow, flow stability, multi-phase flows, heat and species transport, fluid flow control, combustion, turbulence, shock waves, and explosions.
Recently, an important development has occurred for this journal. It has transitioned from a gated access model to an open access platform through Annual Reviews' innovative Subscribe to Open program. Consequently, all articles published in the current volume are now freely accessible to the public under a Creative Commons Attribution (CC BY) license.
This new approach not only ensures broader dissemination of research in fluid mechanics but also fosters a more inclusive and collaborative scientific community.