可变长度消息的Mercurial签名

Elizabeth C. Crites, Anna Lysyanskaya
{"title":"可变长度消息的Mercurial签名","authors":"Elizabeth C. Crites, Anna Lysyanskaya","doi":"10.2478/popets-2021-0079","DOIUrl":null,"url":null,"abstract":"Abstract Mercurial signatures are a useful building block for privacy-preserving schemes, such as anonymous credentials, delegatable anonymous credentials, and related applications. They allow a signature σ on a message m under a public key pk to be transformed into a signature σ′ on an equivalent message m′ under an equivalent public key pk′ for an appropriate notion of equivalence. For example, pk and pk′ may be unlinkable pseudonyms of the same user, and m and m′ may be unlinkable pseudonyms of a user to whom some capability is delegated. The only previously known construction of mercurial signatures suffers a severe limitation: in order to sign messages of length ℓ, the signer’s public key must also be of length ℓ. In this paper, we eliminate this restriction and provide an interactive signing protocol that admits messages of any length. We prove our scheme existentially unforgeable under chosen open message attacks (EUF-CoMA) under a variant of the asymmetric bilinear decisional Diffie-Hellman assumption (ABDDH).","PeriodicalId":74556,"journal":{"name":"Proceedings on Privacy Enhancing Technologies. Privacy Enhancing Technologies Symposium","volume":"2021 1","pages":"441 - 463"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Mercurial Signatures for Variable-Length Messages\",\"authors\":\"Elizabeth C. Crites, Anna Lysyanskaya\",\"doi\":\"10.2478/popets-2021-0079\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Mercurial signatures are a useful building block for privacy-preserving schemes, such as anonymous credentials, delegatable anonymous credentials, and related applications. They allow a signature σ on a message m under a public key pk to be transformed into a signature σ′ on an equivalent message m′ under an equivalent public key pk′ for an appropriate notion of equivalence. For example, pk and pk′ may be unlinkable pseudonyms of the same user, and m and m′ may be unlinkable pseudonyms of a user to whom some capability is delegated. The only previously known construction of mercurial signatures suffers a severe limitation: in order to sign messages of length ℓ, the signer’s public key must also be of length ℓ. In this paper, we eliminate this restriction and provide an interactive signing protocol that admits messages of any length. We prove our scheme existentially unforgeable under chosen open message attacks (EUF-CoMA) under a variant of the asymmetric bilinear decisional Diffie-Hellman assumption (ABDDH).\",\"PeriodicalId\":74556,\"journal\":{\"name\":\"Proceedings on Privacy Enhancing Technologies. Privacy Enhancing Technologies Symposium\",\"volume\":\"2021 1\",\"pages\":\"441 - 463\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings on Privacy Enhancing Technologies. Privacy Enhancing Technologies Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/popets-2021-0079\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings on Privacy Enhancing Technologies. Privacy Enhancing Technologies Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/popets-2021-0079","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

抽象Mercurial签名是隐私保护方案的有用构建块,例如匿名凭据、可删除的匿名凭据和相关应用程序。对于适当的等价概念,它们允许将公钥pk下的消息m上的签名σ转换为等价公钥pk′下的等价消息m′上的签名∑′。例如,pk和pk′可以是同一用户的不可链接的假名,m和m′可以是被委派了某种能力的用户的不可链接的假名。以前唯一已知的mercurial签名结构受到了严重的限制:为了对长度较长的消息进行签名ℓ, 签名者的公钥也必须有长度ℓ. 在本文中,我们消除了这种限制,并提供了一种允许任何长度消息的交互式签名协议。在非对称双线性决策Diffie-Hellman假设(ABDDH)的变体下,我们证明了我们的方案在选择的开放消息攻击(EUF-CoMA)下是不可伪造的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mercurial Signatures for Variable-Length Messages
Abstract Mercurial signatures are a useful building block for privacy-preserving schemes, such as anonymous credentials, delegatable anonymous credentials, and related applications. They allow a signature σ on a message m under a public key pk to be transformed into a signature σ′ on an equivalent message m′ under an equivalent public key pk′ for an appropriate notion of equivalence. For example, pk and pk′ may be unlinkable pseudonyms of the same user, and m and m′ may be unlinkable pseudonyms of a user to whom some capability is delegated. The only previously known construction of mercurial signatures suffers a severe limitation: in order to sign messages of length ℓ, the signer’s public key must also be of length ℓ. In this paper, we eliminate this restriction and provide an interactive signing protocol that admits messages of any length. We prove our scheme existentially unforgeable under chosen open message attacks (EUF-CoMA) under a variant of the asymmetric bilinear decisional Diffie-Hellman assumption (ABDDH).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
16 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信