{"title":"可持续聚合物涂层,用于耐染色织物","authors":"Chengyu Fu, Zhengge Wang, Yingtao Gao, Jian Zhao, Yongchun Liu, Xingyu Zhou, Rongrong Qin, Yanyun Pang, Bowen Hu, Yingying Zhang, Songpei Nan, Jinrui Zhang, Xu Zhang, Peng Yang","doi":"10.1038/s41893-023-01121-9","DOIUrl":null,"url":null,"abstract":"The excessive use of synthetic detergents in laundry operations is an important source of environmental pollution. As a result, sustainability-driven innovations are receiving increasing attention to enable eco-friendly textiles characterized by properties that allow for minimized consumption of detergents. Here we propose a coating-at-will (CAW) strategy to create an extra layer on top of a textile fabric to introduce stain resistance. The coated layer is based on conjugated polymers from lysozyme (Lyz) and zwitterionic poly(sulfobetaine methacrylate) (pSBMA), which, once exposed to the fabric, form a robust nanofilm on the surface. Remarkably, this hydrophilic layer exhibits excellent underwater superoleophobicity, and the coated fabrics can be cleaned simply with water without detergents. Optically transparent and biocompatible, this polymer nanofilm does not compromise the clothing comfort of the fabric and reduces the carbon footprint by more than 50% compared with detergents, according to a life cycle analysis. Moreover, our CAW strategy can be applied to the surfaces of various materials, including metals, glasses, plastics and ceramics, suggesting a versatile solution to the environmental risks posed by cleaning products. Laundry detergents usually contain chemicals that are problematic to the environment. The authors introduce a polymer nanofilm that renders fabrics and many more materials stain resistant and detergent free.","PeriodicalId":19056,"journal":{"name":"Nature Sustainability","volume":"6 8","pages":"984-994"},"PeriodicalIF":25.7000,"publicationDate":"2023-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Sustainable polymer coating for stainproof fabrics\",\"authors\":\"Chengyu Fu, Zhengge Wang, Yingtao Gao, Jian Zhao, Yongchun Liu, Xingyu Zhou, Rongrong Qin, Yanyun Pang, Bowen Hu, Yingying Zhang, Songpei Nan, Jinrui Zhang, Xu Zhang, Peng Yang\",\"doi\":\"10.1038/s41893-023-01121-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The excessive use of synthetic detergents in laundry operations is an important source of environmental pollution. As a result, sustainability-driven innovations are receiving increasing attention to enable eco-friendly textiles characterized by properties that allow for minimized consumption of detergents. Here we propose a coating-at-will (CAW) strategy to create an extra layer on top of a textile fabric to introduce stain resistance. The coated layer is based on conjugated polymers from lysozyme (Lyz) and zwitterionic poly(sulfobetaine methacrylate) (pSBMA), which, once exposed to the fabric, form a robust nanofilm on the surface. Remarkably, this hydrophilic layer exhibits excellent underwater superoleophobicity, and the coated fabrics can be cleaned simply with water without detergents. Optically transparent and biocompatible, this polymer nanofilm does not compromise the clothing comfort of the fabric and reduces the carbon footprint by more than 50% compared with detergents, according to a life cycle analysis. Moreover, our CAW strategy can be applied to the surfaces of various materials, including metals, glasses, plastics and ceramics, suggesting a versatile solution to the environmental risks posed by cleaning products. Laundry detergents usually contain chemicals that are problematic to the environment. The authors introduce a polymer nanofilm that renders fabrics and many more materials stain resistant and detergent free.\",\"PeriodicalId\":19056,\"journal\":{\"name\":\"Nature Sustainability\",\"volume\":\"6 8\",\"pages\":\"984-994\"},\"PeriodicalIF\":25.7000,\"publicationDate\":\"2023-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Sustainability\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.nature.com/articles/s41893-023-01121-9\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Sustainability","FirstCategoryId":"93","ListUrlMain":"https://www.nature.com/articles/s41893-023-01121-9","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Sustainable polymer coating for stainproof fabrics
The excessive use of synthetic detergents in laundry operations is an important source of environmental pollution. As a result, sustainability-driven innovations are receiving increasing attention to enable eco-friendly textiles characterized by properties that allow for minimized consumption of detergents. Here we propose a coating-at-will (CAW) strategy to create an extra layer on top of a textile fabric to introduce stain resistance. The coated layer is based on conjugated polymers from lysozyme (Lyz) and zwitterionic poly(sulfobetaine methacrylate) (pSBMA), which, once exposed to the fabric, form a robust nanofilm on the surface. Remarkably, this hydrophilic layer exhibits excellent underwater superoleophobicity, and the coated fabrics can be cleaned simply with water without detergents. Optically transparent and biocompatible, this polymer nanofilm does not compromise the clothing comfort of the fabric and reduces the carbon footprint by more than 50% compared with detergents, according to a life cycle analysis. Moreover, our CAW strategy can be applied to the surfaces of various materials, including metals, glasses, plastics and ceramics, suggesting a versatile solution to the environmental risks posed by cleaning products. Laundry detergents usually contain chemicals that are problematic to the environment. The authors introduce a polymer nanofilm that renders fabrics and many more materials stain resistant and detergent free.
期刊介绍:
Nature Sustainability aims to facilitate cross-disciplinary dialogues and bring together research fields that contribute to understanding how we organize our lives in a finite world and the impacts of our actions.
Nature Sustainability will not only publish fundamental research but also significant investigations into policies and solutions for ensuring human well-being now and in the future.Its ultimate goal is to address the greatest challenges of our time.