{"title":"一种用于5G波束形成的高速dll混合相位共轭器","authors":"Michael Bolt, M. Adams","doi":"10.4236/cs.2020.113003","DOIUrl":null,"url":null,"abstract":"A delay-locked loop based hybrid phase conjugator (DLL-HPC) is presented as a possible solution for 5G beamforming. Theoretical background, unique capabilities, and experimental verification are presented. The proposed DLL-HPC provides backwards compatibility with existing beamforming protocols as well as sub-millisecond beamsteering and automatic mobile target tracking with zero communication overhead. A proof-of-concept DLL-HPC prototype has been constructed from commercially available components to operate in the 5G NR-FR1 band, indicating that the technique can be readily adopted with available technology.","PeriodicalId":63422,"journal":{"name":"电路与系统(英文)","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A High-Speed DLL-Based Hybrid Phase Conjugator for 5G Beamforming\",\"authors\":\"Michael Bolt, M. Adams\",\"doi\":\"10.4236/cs.2020.113003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A delay-locked loop based hybrid phase conjugator (DLL-HPC) is presented as a possible solution for 5G beamforming. Theoretical background, unique capabilities, and experimental verification are presented. The proposed DLL-HPC provides backwards compatibility with existing beamforming protocols as well as sub-millisecond beamsteering and automatic mobile target tracking with zero communication overhead. A proof-of-concept DLL-HPC prototype has been constructed from commercially available components to operate in the 5G NR-FR1 band, indicating that the technique can be readily adopted with available technology.\",\"PeriodicalId\":63422,\"journal\":{\"name\":\"电路与系统(英文)\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-03-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"电路与系统(英文)\",\"FirstCategoryId\":\"1093\",\"ListUrlMain\":\"https://doi.org/10.4236/cs.2020.113003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"电路与系统(英文)","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.4236/cs.2020.113003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A High-Speed DLL-Based Hybrid Phase Conjugator for 5G Beamforming
A delay-locked loop based hybrid phase conjugator (DLL-HPC) is presented as a possible solution for 5G beamforming. Theoretical background, unique capabilities, and experimental verification are presented. The proposed DLL-HPC provides backwards compatibility with existing beamforming protocols as well as sub-millisecond beamsteering and automatic mobile target tracking with zero communication overhead. A proof-of-concept DLL-HPC prototype has been constructed from commercially available components to operate in the 5G NR-FR1 band, indicating that the technique can be readily adopted with available technology.