Hong Yang, Jiandong Peng, Yuanhang Zhang, Xue Luo, Xuexin Yan
{"title":"城市建成环境对不同类型地铁客流量的时空影响研究——以武汉市为例","authors":"Hong Yang, Jiandong Peng, Yuanhang Zhang, Xue Luo, Xuexin Yan","doi":"10.3390/smartcities6050105","DOIUrl":null,"url":null,"abstract":"As the backbone of passenger transportation in many large cities around the world, it is particularly important to explore the association between the built environment and metro ridership to promote the construction of smart cities. Although a large number of studies have explored the association between the built environment and metro ridership, they have rarely considered the spatial and temporal heterogeneity between metro ridership and the built environment. Based on metro smartcard data, this study used EM clustering to classify metro stations into five clusters based on the spatiotemporal travel characteristics of the ridership at metro stations. And the GBDT model in machine learning was used to explore the nonlinear association between the built environment and the ridership of different types of stations during four periods in a day (morning peak, noon, evening peak, and night). The results confirm the obvious spatial heterogeneity of the built environment’s impact on the ridership of different types of stations, as well as the obvious temporal heterogeneity of the impact on stations of the same type. In addition, almost all built environment factors have complex nonlinear effects on metro ridership and exhibit obvious threshold effects. It is worth noting that these findings will help the correct decisions be made in constructing land use measures that are compatible with metro functions in smart cities.","PeriodicalId":34482,"journal":{"name":"Smart Cities","volume":" ","pages":""},"PeriodicalIF":7.0000,"publicationDate":"2023-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Understanding the Spatiotemporal Impacts of the Built Environment on Different Types of Metro Ridership: A Case Study in Wuhan, China\",\"authors\":\"Hong Yang, Jiandong Peng, Yuanhang Zhang, Xue Luo, Xuexin Yan\",\"doi\":\"10.3390/smartcities6050105\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As the backbone of passenger transportation in many large cities around the world, it is particularly important to explore the association between the built environment and metro ridership to promote the construction of smart cities. Although a large number of studies have explored the association between the built environment and metro ridership, they have rarely considered the spatial and temporal heterogeneity between metro ridership and the built environment. Based on metro smartcard data, this study used EM clustering to classify metro stations into five clusters based on the spatiotemporal travel characteristics of the ridership at metro stations. And the GBDT model in machine learning was used to explore the nonlinear association between the built environment and the ridership of different types of stations during four periods in a day (morning peak, noon, evening peak, and night). The results confirm the obvious spatial heterogeneity of the built environment’s impact on the ridership of different types of stations, as well as the obvious temporal heterogeneity of the impact on stations of the same type. In addition, almost all built environment factors have complex nonlinear effects on metro ridership and exhibit obvious threshold effects. It is worth noting that these findings will help the correct decisions be made in constructing land use measures that are compatible with metro functions in smart cities.\",\"PeriodicalId\":34482,\"journal\":{\"name\":\"Smart Cities\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":7.0000,\"publicationDate\":\"2023-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Smart Cities\",\"FirstCategoryId\":\"1089\",\"ListUrlMain\":\"https://doi.org/10.3390/smartcities6050105\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Smart Cities","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.3390/smartcities6050105","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Understanding the Spatiotemporal Impacts of the Built Environment on Different Types of Metro Ridership: A Case Study in Wuhan, China
As the backbone of passenger transportation in many large cities around the world, it is particularly important to explore the association between the built environment and metro ridership to promote the construction of smart cities. Although a large number of studies have explored the association between the built environment and metro ridership, they have rarely considered the spatial and temporal heterogeneity between metro ridership and the built environment. Based on metro smartcard data, this study used EM clustering to classify metro stations into five clusters based on the spatiotemporal travel characteristics of the ridership at metro stations. And the GBDT model in machine learning was used to explore the nonlinear association between the built environment and the ridership of different types of stations during four periods in a day (morning peak, noon, evening peak, and night). The results confirm the obvious spatial heterogeneity of the built environment’s impact on the ridership of different types of stations, as well as the obvious temporal heterogeneity of the impact on stations of the same type. In addition, almost all built environment factors have complex nonlinear effects on metro ridership and exhibit obvious threshold effects. It is worth noting that these findings will help the correct decisions be made in constructing land use measures that are compatible with metro functions in smart cities.
期刊介绍:
Smart Cities (ISSN 2624-6511) provides an advanced forum for the dissemination of information on the science and technology of smart cities, publishing reviews, regular research papers (articles) and communications in all areas of research concerning smart cities. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible, with no restriction on the maximum length of the papers published so that all experimental results can be reproduced.