有限Radon测度势的电容可微性

Pub Date : 2018-12-29 DOI:10.4310/arkiv.2019.v57.n2.a10
J. Verdera
{"title":"有限Radon测度势的电容可微性","authors":"J. Verdera","doi":"10.4310/arkiv.2019.v57.n2.a10","DOIUrl":null,"url":null,"abstract":"We study differentiability properties of a potential of the type $K\\star \\mu$, where $\\mu$ is a finite Radon measure in $\\mathbb{R}^N$ and the kernel $K$ satisfies $|\\nabla^j K(x)| \\le C\\, |x|^{-(N-1+j)}, \\quad j=0,1,2.$ \nWe introduce a notion of differentiability in the capacity sense, where capacity is classical capacity in the de la Vallee Poussin sense associated with the kernel $|x|^{-(N-1)}.$ We require that the first order remainder at a point is small when measured by means of a normalized weak capacity \"norm\" in balls of small radii centered at the point. This implies weak $L^{N/(N-1)}$ differentiability and thus $L^{p}$ differentiability in the Calderon--Zygmund sense for $1\\le p < N/(N-1)$. We show that $K\\star \\mu$ is a.e. differentiable in the capacity sense, thus strengthening a recent result by Ambrosio, Ponce and Rodiac. We also present an alternative proof of a quantitative theorem of the authors just mentioned, giving pointwise Lipschitz estimates for $K\\star \\mu.$ As an application, we study level sets of newtonian potentials of finite Radon measures.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2018-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Capacitary differentiability of potentials of finite Radon measures\",\"authors\":\"J. Verdera\",\"doi\":\"10.4310/arkiv.2019.v57.n2.a10\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study differentiability properties of a potential of the type $K\\\\star \\\\mu$, where $\\\\mu$ is a finite Radon measure in $\\\\mathbb{R}^N$ and the kernel $K$ satisfies $|\\\\nabla^j K(x)| \\\\le C\\\\, |x|^{-(N-1+j)}, \\\\quad j=0,1,2.$ \\nWe introduce a notion of differentiability in the capacity sense, where capacity is classical capacity in the de la Vallee Poussin sense associated with the kernel $|x|^{-(N-1)}.$ We require that the first order remainder at a point is small when measured by means of a normalized weak capacity \\\"norm\\\" in balls of small radii centered at the point. This implies weak $L^{N/(N-1)}$ differentiability and thus $L^{p}$ differentiability in the Calderon--Zygmund sense for $1\\\\le p < N/(N-1)$. We show that $K\\\\star \\\\mu$ is a.e. differentiable in the capacity sense, thus strengthening a recent result by Ambrosio, Ponce and Rodiac. We also present an alternative proof of a quantitative theorem of the authors just mentioned, giving pointwise Lipschitz estimates for $K\\\\star \\\\mu.$ As an application, we study level sets of newtonian potentials of finite Radon measures.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2018-12-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/arkiv.2019.v57.n2.a10\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/arkiv.2019.v57.n2.a10","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

我们研究了类型为$K\star \mu$的势的可微性,其中$\mu$是$\mathbb{R}^N$中的有限Radon测度,核$K$满足$|\nabla^j K(x)| \le C\, |x|^{-(N-1+j)}, \quad j=0,1,2.$。我们在容量意义上引入了可微性的概念,其中容量是与核相关的de la Vallee Poussin意义上的经典容量$|x|^{-(N-1)}.$我们要求当用以该点为中心的小半径球的归一化弱容量“范数”测量时,该点的一阶余量很小。这意味着弱$L^{N/(N-1)}$可微性,因此$1\le p < N/(N-1)$在Calderon- Zygmund意义上具有$L^{p}$可微性。我们证明$K\star \mu$在容量意义上是a.e.可微的,从而加强了Ambrosio, Ponce和Rodiac最近的结果。我们还提出了作者刚才提到的一个定量定理的另一种证明,给出了$K\star \mu.$的点向Lipschitz估计。作为一个应用,我们研究了有限Radon测度的牛顿势的水平集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Capacitary differentiability of potentials of finite Radon measures
We study differentiability properties of a potential of the type $K\star \mu$, where $\mu$ is a finite Radon measure in $\mathbb{R}^N$ and the kernel $K$ satisfies $|\nabla^j K(x)| \le C\, |x|^{-(N-1+j)}, \quad j=0,1,2.$ We introduce a notion of differentiability in the capacity sense, where capacity is classical capacity in the de la Vallee Poussin sense associated with the kernel $|x|^{-(N-1)}.$ We require that the first order remainder at a point is small when measured by means of a normalized weak capacity "norm" in balls of small radii centered at the point. This implies weak $L^{N/(N-1)}$ differentiability and thus $L^{p}$ differentiability in the Calderon--Zygmund sense for $1\le p < N/(N-1)$. We show that $K\star \mu$ is a.e. differentiable in the capacity sense, thus strengthening a recent result by Ambrosio, Ponce and Rodiac. We also present an alternative proof of a quantitative theorem of the authors just mentioned, giving pointwise Lipschitz estimates for $K\star \mu.$ As an application, we study level sets of newtonian potentials of finite Radon measures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信