人工神经网络与深度神经网络在痴呆检测中的比较分析

Q4 Social Sciences
Deepika Bansal, K. Khanna, R. Chhikara, R. Dua, Rajeev Malhotra
{"title":"人工神经网络与深度神经网络在痴呆检测中的比较分析","authors":"Deepika Bansal, K. Khanna, R. Chhikara, R. Dua, Rajeev Malhotra","doi":"10.4018/ijsesd.313966","DOIUrl":null,"url":null,"abstract":"Dementia is a neurocognitive brain disease that emerged as a worldwide health challenge. Machine learning and deep learning have been effectively applied for the detection of dementia using magnetic resonance imaging. In this work, the performance of both machine learning and deep learning frameworks along with artificial neural networks are assessed for detecting dementia and normal subjects using MRI images. The first-order and second-order hand-crafted features are used as input for machine learning and artificial neural networks. And automatic feature extraction is used in the last framework with the pre-trained networks. The outcomes show that the framework using the deep neural networks performs better contrasted with the first two methodologies used in terms of various performance measures.","PeriodicalId":38556,"journal":{"name":"International Journal of Social Ecology and Sustainable Development","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparative Analysis of Artificial Neural Networks and Deep Neural Networks for Detection of Dementia\",\"authors\":\"Deepika Bansal, K. Khanna, R. Chhikara, R. Dua, Rajeev Malhotra\",\"doi\":\"10.4018/ijsesd.313966\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Dementia is a neurocognitive brain disease that emerged as a worldwide health challenge. Machine learning and deep learning have been effectively applied for the detection of dementia using magnetic resonance imaging. In this work, the performance of both machine learning and deep learning frameworks along with artificial neural networks are assessed for detecting dementia and normal subjects using MRI images. The first-order and second-order hand-crafted features are used as input for machine learning and artificial neural networks. And automatic feature extraction is used in the last framework with the pre-trained networks. The outcomes show that the framework using the deep neural networks performs better contrasted with the first two methodologies used in terms of various performance measures.\",\"PeriodicalId\":38556,\"journal\":{\"name\":\"International Journal of Social Ecology and Sustainable Development\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Social Ecology and Sustainable Development\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/ijsesd.313966\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Social Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Social Ecology and Sustainable Development","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijsesd.313966","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Social Sciences","Score":null,"Total":0}
引用次数: 0

摘要

痴呆症是一种神经认知性脑疾病,是一项全球性的健康挑战。机器学习和深度学习已被有效应用于使用磁共振成像检测痴呆症。在这项工作中,使用MRI图像评估了机器学习和深度学习框架以及人工神经网络的性能,以检测痴呆症和正常受试者。一阶和二阶手工制作的特征被用作机器学习和人工神经网络的输入。在最后一个框架中使用了自动特征提取和预训练网络。结果表明,在各种性能指标方面,使用深度神经网络的框架与前两种方法相比表现更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Comparative Analysis of Artificial Neural Networks and Deep Neural Networks for Detection of Dementia
Dementia is a neurocognitive brain disease that emerged as a worldwide health challenge. Machine learning and deep learning have been effectively applied for the detection of dementia using magnetic resonance imaging. In this work, the performance of both machine learning and deep learning frameworks along with artificial neural networks are assessed for detecting dementia and normal subjects using MRI images. The first-order and second-order hand-crafted features are used as input for machine learning and artificial neural networks. And automatic feature extraction is used in the last framework with the pre-trained networks. The outcomes show that the framework using the deep neural networks performs better contrasted with the first two methodologies used in terms of various performance measures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.60
自引率
0.00%
发文量
196
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信